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A necessary and sufficient condition for a collectivity (observable or hypothesized) to be considered a combinatory 
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If we classify combinatory systems according to their macro behaviour (or their macro effect) we can, despite the 
variety of phenomena produced, determine five fundamental types of combinatory systems, the most important of 
which are: 

1. systems of accumulation, whose activity involves an accumulation of objects, behaviours, states, or effects 
of some kind; 

2. systems of diffusion, which have as their macro effect the diffusion of an «object» (of a feature, a 
particularity, or a «state») from a limited to a greated number of agents of the system; 

3. systems of pursuit, which produce a behaviour consisting in a gradual shift of the system toward an 
objective, a limit, a target, just as if the system, as a single entity, were pursuing a goal or trying to move 
towards ever more «advanced» states; 

4. systems of order, which produce a phenomenon that can be interpreted as the attainment or maintainment 
of an arrangement, an ordered disposition, or a form of some kind, among the agents that form the system 

5. systems of improvement and progress: their effect is to produce progress (according to commonly 
accepted value judgments) in the overall state of a collectivity in which the individuals pursue their search 
for individual improvement (that is, an increase in some parameter judged to be useful or favorable). 

The second aim of this study is to illustrate the systems of improvement and progress, which are the most relevant 
class of combinatory systems, and to present three typical classes: - Medial systems - Maximal systems - Minimal 
systems of improvement and progress. 
 

Key words: Combinatory Systems, Micromotives and macro behaviour, Dynamic 
Systems, Populations and collectivities, Systems of improvement and progress, 
Systems of accumulation, Systems of diffusion, Systems of pursuit, Systems of 
order 
 

1 - The Combinatory Systems Theory 

1.1 Introduction. The simplest definition 

The first aim of this paper is to present a simple theory – the theory of combinatory 
systems – which (I hope) is able to describe, interpret and explain many collective 
phenomena and their observable effects. The second aim is to illustrate the most 
relevant class (I think) of combinatory systems: the systems of improvement and 
progress 1. 

In plain words, I define as (social) combinatory systems the unorganized systems 
made up of a collectivity of similar agents, each of which produces a micro 
behaviour and a micro effect similar to that of the others. The macro behaviour – 
and/or the macro effect – of the system, as a unit, derives from the combination of 
the analogous behaviours – or effects – of its similar agents, according to a 
feedback relation between micro and macro behaviours 2. 

This internal feedback between micro and macro behaviours – or between their 
micro and macro effects – guarantees the maintenance over time of the system’s 
dynamics and produces some self-organization effect. When the system starts up 
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“by chance” it then maintains its behaviour “by necessity”, as if an Invisible Hand 
or a Supreme Authority regulated its time path and produced the observable effects 
and patterns (figure 1). 

There is nothing strange here: the invisible hand is nothing other than the micro-
macro feedback action. 

The feedback arises from necessitating factors (which act on the agents in the sys-
tem) and is maintained by the action of recombining factors (which act on the col-
lectivity).  

Fig. 1 – The micro macro feedback 
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1.2 The formal definition 

In order to give a simple illustration we shall indicate by S(t, N) = [t, A(1, t), ..., 
A(n, t), ... , A(N, t)] a non-ordered system formed by N agents (or elements), A(n, 
t), 1≤n≤N, observed for t∈T, appropriately defined 3. 

Let us suppose that each A(n, t), has a state – denoted by an opportune set of vari-
ables – and also that it can change its state for t∈T, showing a micro behaviour as 
the movement of the state values in T. 

Thus we can write mb(n, t)t∈T for the micro behaviour of the agents A(n) observed 
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in period T. 

Let us also suppose that we can define {C1≤n≤N [mb(n, th)]} for a combination of 
those micro behaviours at time th, where C1≤n≤N indicates a set of combination op-
eration(s), appropriately specified (sum, product, average, min, max, etc.), of val-
ues for state variables associated with the N agents 4. 

Moreover, we write MB(th) = F {C1≤n≤N [mb(n, th)]} to represent  the macro behav-
iour of S(t, N), defined as a recombining function F (or macro rule) of the combi-
nation of the micro behaviours, and mb(n, th+1) = fn {Nn[MB(th)] to represent the 
micro behaviour, where Nn represents the necessitating operation(s) that link(s) the 
micro behaviours to the macro behaviour (or the micro and macro effects). 

The combinatory system, observed on a discrete time scale, can be represented as 
follows (figure 1) 5: 

 

 mb(n, t0) ← “CHANCE” 1≤n≤N [A.1] 
[A] MB(th) = F {C1≤n≤N [mb(n, th)]} h= 0, 1, 2, … [A.2] 
 mb(n, th+1) = fn {Nn[MB(th)]} 1≤n≤N [A.3] 
 

Equation [A.1] shows that the first input is considered to be the product of chance. 

In equation [A.2] I have indicated the same time reference (th), since usually the 
macro behaviour is contemporaneous to the micro behaviours, as it is derived from 
these. 

Equation [A.3] instead describes how the subsequent micro behaviour mb(n, th+1) 
depends on the past macro behaviour (again referring to th), according to a necessi-
tating function fn (or micro rule) that we assume is specified for every A(n, t) and 
according to the necessitating operation(s) represented by Nn. 

1.3. The central idea of Combinatory System Theory (CST) 

The central idea is that we can view a collectivity as a combinatory system only if 
the behaviour of agents is not exclusively determined by general rules 6 (as in the 
cybernetic approach, in evolutionary cybernetics 7, in population dynamics 8, in 
systems dynamics 9, in Haken’s synergetics 10 and in the autopoietic approach 11) or 
by local rules 12 (as in the traditional complex systems approach 13 and its related 
specific topics: adaptive complex systems 14, cellular automata 15, Alife 16 ap-
proaches, such as Ants 17, Swarm 18 and Floys 19 and so on, the recursive ap-
proach20, such as fuzzy systems 21 and genetic algorithms 22) but above all by a gen-
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eral micro-macro feedback rule, so that we must observe, or assume, mutual inter-
dependence: the micro behaviours produce the macro behaviour, but this influences 
the micro behaviours in a micro-macro feedback which acts over many cycles 23. 

The combinatory systems approach is neither a macro approach, since it also refers 
to local rules considering micro bahaviours, nor a micro approach, since it also in-
cludes the macro behaviour in the model of the system. 

It is rather a micro-macro approach, precisely in that the operating rules, describ-
ing the behaviour of the system, must in some way include not only local rules but 
also the feedback between the micro and macro behaviours 24. 

1.4 The three main characteristics of CST 

The interdependence between micro and macro rules and effects constitutes the 
first characteristic of Combinatory Systems. 

Recognizing the existence of a micro-macro feedback is indispensable for 
interpreting collective phenomena as deriving from a combinatory system: the state 
of the system at a given time must depend on the state of its agents; but this in turn 
must depend on the state of the system.  

The micro-macro feedback generates a synergetic effect that produces self-
organization and emerging macro behaviours which are only attributable to the 
collectivity. 

We can thus say that in combinatory systems the micro behaviours create a pattern 
in the collectivity – normally invisible to the agents – and this pattern influences or 
determines the micro behaviour of the agents25. 

The macro behaviour – or its macro effects – may be thought of as a dynamic at-
tractor toward which the micro behaviour tends and modifies over time26. For this 
reason we cannot consider in general the ants, the swarm and, more generally, the 
cellular automata approaches as examples of combinatory systems, except in the 
case in which the macro effect may affect the micro behaviours of the agents in 
some way 27. 

We must nevertheless also recognize that each agent is normally blind to the macro 
behaviour of the system while being aware of the micro behaviours of some other 
agents; from this we immediately see a second characteristic of the combinatory 
systems: they are incomplete and limited information systems: 

− they are incomplete information systems in that each of the A(n) ∈ S(t, N) pro-
duce their own micro behaviours without considering the macro behaviour of the 
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unitary system as information (except as an extreme case of a completely observ-
able macro effect);  

− they are limited information systems in that the micro behaviour of A(n) depends 
on information about the micro behaviours (which occur or is only expected or 
foreseen) of a limited number of other neighbourhoods of A(n) (defined in an op-
portune way), exactly as in a cellular automaton.  

The second characteristic is not in contrast with the first; they simply derive from 
different points of view: 

− from an external point of view, the observer must recognize the macro behaviour 
and the micro-macro feedback action in order to define and build a model of the 
combinatory system;  

− from an internal point of view the agents normally are unaware of the macro be-
haviour and act according to limited information. 

In many cases, however, this second characteristic seems to fail because we can 
observe agents acting according to some general pattern related to the system. 
There is no contradiction: we must simply distinguish between the micro and 
macro behaviours and micro and macro effects in the environment. 

When this occurs, the micro behaviours of the agents are related to some observ-
able macro effects,  and the micro and macro feedback operates between the micro 
behaviour and the macro effects. 

The combinatory systems generally are set off "by chance", but when activated 
they maintain their dynamics "by necessity", due to the presence of necessitating 
and recombining factors. 

The action of the micro-macro feedback, which is guaranteed by the necessitating 
and recombining factors, turns these collectivities into true systems which can be 
observed as a unit as well as a multiplicity of agents, and which I have termed 
combinatory systems. 

Moreover, to interpret the activity of combinatory systems we need always to un-
derstand the nature of both the recombining factors and the necessitating ones 
since, without the joint action of these factors, there would be no micro-macro 
feedback and the collective phenomena the theory tries to explain would not be 
produced. 

Often such necessitating factors result from obligation, convenience, utility, desire, 
or the operative programme of the individual agents.The agents can be aware of 
these (I want to adjust my step to the marching step of my companions) or not (I 
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don’t want to transmit the flu virus, but this takes place without my being aware of 
it). 

While the recombining factor characterizes the macro rules, the necessitating factor 
characterizes the micro ones. 

In order to explain the activity of combinatory systems we must understand the 
nature of the macro rules, which specify the recombining factor, and of the macro 
rules, which specify the necessitating factor; the joint action of these factors gives 
rise to and maintains the macro and micro behaviours. 

The activity of the combinatory systems is thus produced by the joint action of 
"chance" and "necessity"; they can therefore also be called "chance-necessity" 
systems and, as such, are distinguished from operative systems, which are usually 
"cause-effect" systems 28. 

Other relevant characteristics (I will only mention these) concern the fact that, even 
though combinatory systems are unorganized and closed systems, they can 
organize themselves into specialized subsystems and show ramifications 29 and can 
expand30 their effects to agents belonging to a vaster environment. 

1.5 Irreversible and reversible systems. Path dependence and chaos 

If a probability is associated to the transition of state of each agent, then the combi-
natory system is stochastic; the macro behaviour depends on the probabilistic mi-
cro behaviours. In the opposite case it is deterministic. 

In probabilistic combinatory systems the micro behaviour depends on a probability 
of transition of state, and is carried out in a period of transition of state.  

Both probabilities and periods of transition of state nevertheless depend on the 
state of the system, so that the micro behaviours are in turn conditioned by the 
macro behaviour of the entire system. 

The probability of transition should offer numerical information on all the charac-
teristics observable, or even imaginable, in the agent A(n, t), such as to make a 
change of state possible, plausible, probable, likely. This thus expresses the influx 
of necessitating factors that impose on A(n, t) its own micro behaviour. In other 
words, it should express the likelihood of a given micro behaviour and a given mi-
cro effect which can potentially be carried out and obtained from A(n, t). 

Due to the existence of the micro-macro feedback, if the state of the system derives 
from the state of its agents, this nevertheless influences the micro behaviours and 
the states of the agents in the base according to the probability of transition for each 
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one; a probability that depends, in turn, on the state of the system. 

We must therefore take account of this feedback, for example by writing that: 

1) the state of each agent depends on the probability that characterizes it; but this 
probability is in turn a function of the state of the system;  

2) the length of the period of transition of state of each agent that is modified is 
also a function of the state of the system. 

The combinatory systems which are most interesting and easiest to represent are 
the irreversible ones where both the micro and macro behaviour produce perma-
nent effects (residential or industrial settlements, the maintenance of the language, 
the spread of epidemics). Irreversible systems explain almost all the cases of path 
dependence, as we can see from [A.1] and [B.1]. 

In regard to combinatory system theory, recognizing the phenomenon of path de-
pendence is not a theory but simply the observation that the dynamic of a social 
system – its macro behaviour or its macro effect – can be thought to depend on ini-
tial chance (dependence on initial conditions) and on the recombining rules of the 
micro behaviours of the agents31. 

Thus, the individual choices of the agents lead to micro behaviours deriving from 
past history, that is from the macro behaviour (history dependence). 

In this sense the path dependence is the proof of the action of the micro-macro 
feedback, even if path dependence theory does not include this mechanism in the 
explanation of the path dependence32. 

The deterministic action of path dependence, the necessity, is not a consequence of 
the past evolution of the path of the system but of the micro-macro feedback, and 
thus of the necessitating and recombining factors. 

Ignoring micro macro feedback leads to a second consequence: path dependence 
theory focuses particularly on the micro behaviour, considering the macro behav-
iour as a constraint to the individual freedom to decide. 

The theory also considers reversible systems that have a cyclical behaviour and, 
under certain conditions concerning the probability function regarding the transi-
tion of state of the agents, a chaotic one as well. 

1.6 First example – Chaotic probabilistic reversible system 

As an example, consider the case of a non-ordered system where every A(n, t) is a 
Bernoulli random variable that, at any t∈T, shows only two states: mb(n, t) = [1 or 
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0].  

The macro behaviour is MB(t) = N(t), 0≤N(t)≤N, since for [A.2] we have simply 
established that R1≤n≤N[mb(n, t)],= ∑1≤n≤N [mb(n, t)].  

We also suppose that the probabilities of transition from state “0” to state “1”, p(n, 
N), are defined for each A(n, t) and for each 0≤N(t)≤N, as well as the probability 
q(n, N) = 1 - p(n, N); to simplify, these probabilities might be assumed to be the 
same for each agent, so that we can write p(N) = 1- q(N). 

We assume there is a feedback between the micro and macro behaviour, in the 
sense that the state of each agent depends on the probability p(n, N), which in turn 
depends on the state of the system, N(t), which defines the macro behaviour. 

Let us simply assume that the function p(n, N) takes on the following values: 

p(n, N) = p(N) = 2(N/N) if 0<N≤N/2 

p(n, N) = p(N) = 1-[(2N-N)/N] if N/2<N≤N. 

If we simulate the micro behaviour by some experiment that generates random 
numbers for each agent, we observe that after the random initial impulse that 
shapes mb(n, t0), the combinatory system presents a chaotic macro behaviour 
MB(t) = N(t) (figure 2). 

 

Fig. 2 – Reversible probabilistic combinatory system with chaotic macro be-
haviour 
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Test n. 2: the function p(n, N) increases straight line and assumes the value 1 for 
N(t) = (4/5 N), and then decreases straight line to 0 
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1.7. Second example – The Murmur and Noise combinatory system 

Let us consider, for example, the phenomenon of a murmur arising in a crowded 
room. Where does it come from? From the voice levels of those present in the 
room who are speaking to each other. But why do they speak in a loud voice? Be-
cause there is the murmur. If the murmur increases, those present, in order to make 
themselves heard, must raise their voices. But this only increases the murmur, 
which forces those present to raise their voices even more, which increases the 
murmur and forces those present to.... etc., etc. The murmur is formed by the voice 
levels of those talking, but this in turn depends on the murmur. 

We can represent this system by the model (see model [A] and figure 3)33: 

 
  v(n, t0)← “CHANCE” 
[C]  M(th) = { k (1/N) ∑1≤n≤N [v(n, th)] + Q rp (t) } (1 – a) 
  v(n, th+1) = [w(n) M(th) + (vmin(n) + vrnd(n) lp(n, th)) ] sp(n) bR(n, th) 

 

in which: 

– v(n, th) [= mb(n, th)] is the voice level of A(n, th), 

– M(th) [= MB(th)] is the Murmur arising from the group of talking people,  

– C1≤n≤N [mb(n, th)] = (1/N) ∑1≤n≤N [v(n, th)] is the form of combination of the 
N voice levels that considers simply the mean value of the voice levels of 
talking people. 

– k represents an environmental noise coefficient,  

– [Q rp(t)] represents random noise influencing M(th) according to the prob-
abilities of external random events rp(t),  

– a ≤ 1 indicates the sound-absorbing coefficient of the environment, 
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– [w(n) M(th) + vmin (n)] [= NnMB(th)] indicates the necessitating functions, 
where  

– w(n) > 0 represents a subjective weight, 

– vmin (n) denotes the voice level above the background noise that is neces-
sary to be heard, which depends on the amount of information the speaker 
has (number of persons who must be reached by his voice), 

– vrnd(n) represents a random voice level which may influence the voice level 
of each speaker, 

– lp(n, th) denotes the probability of this random factor, 

– sp(n) synthesizes the probability of speaking for the A(n) (depending on 
education, number of talking people, attention, interest and so on, but not 
depending on time), 

– bR(n, t) denotes the bearing factor; if we indicate with b* the tolerance, that 
is the maximun level of bearing, then bR(n, t) = 1 if v(n, th) < b(n)* and 
bR(n, t)= 0 if v(n, th) = b* 34. 

 
 

Fig. 3 - Model of Murmur and Noise system with 10 agents 
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1.8 Typology of combinatory systems  

Combinatory systems can be ordered and classified into five classes according to 
the macro effect produced: 

1 - systems of ACCUMULATION, whose macro behaviour leads to a macro effect 
which is perceived as the accumulation of objects, behaviours, or effects of some 
kind; this logic applies to quite a diverse range of phenomena, among which the 
formation of urban or industrial settlements of the same kind and of industrial dis-
tricts, the accumulation of garbage, graffiti, writings on walls; but it can also be ap-
plied to phenomena such as the breaking out of applause, the formation of lines in 
fashion shows, the grouping of stores of the same type in the same street. 

2 - systems of DIFFUSION, whose macro effect is the diffusion of a trait or particu-
larity, or of a "state", from a limited number to a higher number of agents of the 
system; systems of diffusion explain quite a diverse range of phenomena: from the 
spread of a fashion to that of epidemics and drugs; from the appearance of monu-
ments of the same type in the same place (the towers of Pavia, for example) to the 
spread and maintenance of a mother tongue, or of customs.  

3 - systems of PURSUIT, which produce a behaviour that consists in a gradual shift-
ing of the system toward an objective, as if the system, as a single entity, were pur-
suing a goal or trying to move toward increasingly more advanced states; this 
model can represent quite a different array of combinatory systems: from the pur-
suit of records of all kinds to the formation of a buzzing in crowded locales; from 
the start of feuds and tribal wars in all ages to the overcoming of various types of 
limits. 

4 - systems of ORDER, which produce a macro behaviour, or a macro effect, per-
ceived as the attainment and maintenance of an ordered arrangement among the 
agents that form the system; systems of order can be used to interpret a large num-
ber of phenomena: from the spontaneous formation of ordered dynamics (for an 
observer) in crowded places (dance halls, pools, city streets, etc.) to that of groups 
that proceed in a united manner (herds in flight, flocks of birds, crowds, etc.); from 
the creation of paths in fields, of wheel-ruts on paved roads, of successions of holes 
in unpaved roads, to the ordered, and often artificial, arrangement of individuals 
(stadium wave, Can-Can dancers, Macedonian phalanx). 

5 - systems of IMPROVEMENT AND PROGRESS, whose effect is to produce progress, 
understood as an improvement in the overall state of a collectivity 35. There are 
three fundamental types of systems of improvement and progress: 

a) Medial systems 
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b) Maximal systems, or systems of pursuit 

c) Minimal systems, or systems of flight. 

These will be presented in SECTION 2. 

The four most evident systems of improvement and progress which every business 
operates in are: 

1) Increasing productivity 

2) Greater quality 

3) From Needs to Aspirations 

4) Scientific and technical progress 

These will be summarized in SECTION 3. 

 

 

 

2 - Systems of improvement and progress 

2.1 The general definition 

We indicate by S(t, N) = [t, A(1, t), ..., A(n, t), ... , A(N, t)], a combinatory system 
(with or without a shape) composed of a base of N agents, A(n, t), 1≤n≤N≥2, and 
we assume: 

- that every A(n, t) ∈ S(t, N) is characterized – with regard to the micro behav-
iour, or the micro effect – by a variable µ(n, t) (or a vector of variables) that repre-
sents the state of the agent A(n) at time “t” and the micro behaviour mb(n, t)t∈T = 
µ(n, t), in T. Such a µ(n, t) can be defined as an improvement variable (or index, or 
measure, or parameter) of the behaviour (or in the states) of that agent, according to 
value parameters to be defined from observation or stipulation, if µ(n, t2) > µ(n, t1), 
for every t2 > t1 of T

 
(or the opposite inequality, according to the meaning of µ(n, 

t)); 

- that the entire S(t, N) is characterized—in its macro behaviour, or macro effect 
– by a variable (or a vector of variables 36) π(S, t) = C1≤n≤N [µ(n, t)], that represents 
an index (or measure, or parameter) of progress in the behaviour (or in the states) 
of the system itself. In particular, there is progress in the system – according to 
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value parameters to be defined by observation – if π(S, t2) > π(S, t1), for every t2 > 
t1, (or the opposite inequality, according to the meaning of π(S, t)). 

According to model [A], presented in a previous section, we can formalize the fol-
lowing general model of a combinatory system showing “improvement” and “pro-
gress”: 

 

 mb(n, t0) = µ(n, t0) ← “CHANCE” 1≤n≤N [E.1] 
[E] MB(t) = π(S, t) = F {C1≤n≤N [µ(n, t)]}, t ∈ T, … [E.2] 
 mb(n, t+dt) = µ(n, t+dt)  = fn {Nn[π(S, t)]} 1≤n≤N [E.3] 
 
When “by chance” an improvement begins in one or all of the agents of the system, 
then “by necessity” progress occurs throughout the system; the improvement 
spreads and the progress continues, unless a limiting state is reached in which no 
further improvement can be carried out and no further progress can occur37. 

A simple descriptive model of the systems of improvement and progress is shown 
in figure 4. 

 

Fig. 4 - Model of the combinatory system of improvement and progress 
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2.2 Three types of systems of improvement and progress 

In order to specify model [E], the first step is to define the combining operation 
C1≤n≤N [µ(n, t)]; the second step is to define the necessitating functions Nn[π(S, t)] 
and to specify the shape of the functions F and f. 

Considering the first step, we can observe that there are three basic forms of sys-
tems of improvement and progress which are characterized differently depending 
on the way in which the improvement parameter interacts with the progress pa-
rameter. 

a) MEDIAL SYSTEMS: here the micro behaviours aim at reaching and/or exceed-
ing a parameter of progress which represents an AVERAGE (whose form must 
be specified) of the measures of the parameter of improvement in the base 
agents; the macro behaviour of the system leads to a continual readjustment 
of the average, so that the individual improvement leads to an advancement 
in the average progress, which, in turn, gives a boost to individual improve-
ment; 

b) MAXIMAL SYSTEMS, or “inferiority-reducing” or even “of pursuit”: these are 
characterized by the fact that the parameter of progress is represented by the 
MAXIMUM value assumed by the parameters of improvement which character-
ize the agents of the system (the agent to which this value belongs is referred 
to as “the best”); all the other agents thus present a state which is inferior to 
the best and try to improve for their part; the agent that succeeds in being the 
best becomes the guide for progress and gives a push toward further im-
provement. We thus witness micro behaviours aimed at reducing the inferior-
ity with respect to the level of progress, and this causes a macro behaviour 
whose effect is to raise the average level of improvement, so that some 
agents manage to further raise the previous level of progress; 

c) MINIMAL SYSTEMS, or “superiority-incrementing” or even “of flight”: these 
systems act in a symmetrical way with respect to the previous ones, since the 
parameter of progress is represented by the MINIMUM level reached by the 
improvement parameter; all the other micro behaviours are thus superior. 
Each agent of the system tries to outdistance as much as possible its own 
level of improvement from the level of progress, to flee from the minimum 
level of improvement, to increment its own superiority. This leads to a gen-
eral increase in the average level of improvement, which ends up raising the 
parameter of progress, further boosting the levels of improvement. 
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2.3. MEDIAL SYSTEMS of improvement and progress 

Continuing with the second step, in order to specify model [E] we will consider the 
simplest case, that of the MEDIAL SYSTEMS, where the progress parameter, π(S, t), 
derives from an AVERAGE of the measures of µ(n, t), 1≤n≤N; to further simplify the 
situation, let us assume that π(S, t) corresponds to the simple arithmetical mean of 
the levels of the parameter of improvement measured at time t, with the average it-
self referring to time t (every other choice regarding the time period is permissible). 

The previous assumption allows us to derive the following model (figure 5): 

 

 mb(n, t0) = µ(n, t0) ← “CHANCE” 1≤n≤N [F.1] 
[F] MB(t) = π(S, t) = (1/N) Σ1≤ n≤N µ(n, t), ∀t ∈ T, … [F.2] 
 mb(n, t+dt) = µ(n, t+dt)  = µ(n, t+dt)  = { µ(n, t) +  
   + p∆[1,0](n, t) iR(n, t) [µ(n, t) - π(S, t)] } + 
   + { r∆[1,-1](n, t) [k µ(n, t)] } 1≤n≤N [F.3] 
 

in which the factor  

p∆[1,0](n, t) iR(n, t) ∆µ(n, t), 

for each A(n), represents the necessitating functions Nn[π(S, t)] in the sense that: 

∆µ(n, t) = µ(n, t) - π(S, t) at time t denotes the deviation between the indi-
vidual improvement level and mean level denoting progress; so that each 
A(n) perceives an inferiority, with respect to the mean, if ∆µ(n, t) <0, or a 
superiority in the opposite case; 

a) 

b) p∆[1,0](n, t) represents the necessitating factor (a weight, a probability, an in-
tensity, etc.) – which varies for each A(n), depending on the internal ran-
dom events of A(n) (ability, need, will, decision, resolution, strength or 
weakness, shyness, information, and so on), and at each moment – accord-
ing to which each A(n) takes account of the deviation in order to readjust 
the parameter of improvement. In other words, p∆[1,0](n, t) states “if” A(n) 
may readjust µ(n, t); the foot symbol ∆ means that p∆[1,0](n, t) may be differ-
ent for the cases of ∆µ(n, t) ≥ 0 or for the opposite case; the foot symbols [0, 
1] mean that p∆[1,0] admits only the possibility of positive improvement with 
respect to the progress, not that of negative improvement; in other words, 
p∆[1,0], for each agent, states the probability of reducing the negative gap or 
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maintaining the positive gap and not the possibility of worsening the posi-
tion with respect to the progress (of course this restriction may be relaxed); 

c) iR(n, t) represents a random coefficient of improvement that states “how 
much” A(n) may readjust µ(n, t); so that A(n) may or may not improve its 
position, according to the probability p∆[1,0], and in the “yes” case the meas-
ure of improvement is determined by iR(n, t); 

The factor: 

{ r∆[1,-1](n, t) [k µ(n, t)] }, 

for each A(n), represents a contingent factor, according to the coefficient k, in the 
sense that: 

a)  r∆[1,-1](n, t) indicates the probability that the n-th agent in period t will undergo 
a random variation in its own level of improvement; 

b) the foot symbols [1,-1] mean that r∆[1,-1](n, t) may represent an external favour-
able (if 1) or unfavourable (if -1) random event (luck, competitors, ignorance 
and so on). If the favourable external event occurs compatible with the prob-
ability r∆[1,-1](n, t), then the parameter of improvement of A(n, t) is affected by 
[k µ(n, t)]; otherwise by -[k µ(n, t)]; 

c) the foot symbol ∆ means that r∆[1,-1](n, t) may also be different for the cases of 
∆µ(n, t) ≥ 0 or for the opposite case. 

 

Fig. 5 - Model of a medial system with ten agents 
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2.4 MAXIMAL SYSTEMS (of pursuit) of improvement and progress 

The operating logic of the MAXIMAL SYSTEMS is similar to that of the MEDIAL SYS-
TEMS. From model [F] we arrive at the following: 

 

 mb(n, t0) = µ(n, t0) ← “CHANCE” 1≤n≤N [G.1] 
[G] MB(t) = π(SM, t) = Maxn µ(n, t) = µ(nM, t),  ∀t ∈ T,  [G.2] 
 mb(n, t+dt) = µ(n, t+dt)  = µ(n, t+dt) = { µ(n, t) +  

+ p∆[1,0](n, t) iR(n, t) [µ(n, t) - π(SM, t)] } + 
+ { r∆[1,-1](n, t) [k µ(n, t) + h π(S, t)] } 1≤n≤N [G.3] 

 

From equation [G.2] we observe that MAXIMAL SYSTEMS differ in that the parame-
ter of progress is represented by the maximum level of the parameter of improve-
ment [Maxn µ(n, t)] reached by the base agents. 

The agent A(nM) which provides the maximum for µ(nM, t) can be called the leader 
agent, since its performance represents the degree of progress for the entire system. 

The term ∆µ(n, t) = µ(n, t) - π(SM, t) = µ(n, t) - Maxn µ(n, t) represents the quantum 
of inferiority; thus it can never take on positive values, and will be equal to zero for 
the leader agent (assuming for simplicity’s sake - though it is not necessarily the 
case - that this agent is unique); 

The level of the parameter of improvement at time (t+dt) depends in this case as 
well on the level of the parameter of progress, for example according to [G.3], 
which is entirely similar to [F.3], except for the term { r∆[1,-1](n, t) [k µ(n, t) + h π(S, 
t)] }. 

At time t<t0 we have µ(n, t) = 0 for each 1≤n≤N. At time t0 we can instead assume 
that, “by chance”, µ(n, t0) > 0 for some n. We identify the “leader” agent in terms 
of improvement - that is, the agent A(nM) - and we use it as the indicator of pro-
gress. At this point the combinatory system begins to operate as a system of pur-
suit, since the other agents “pursue” the leader and try to eliminate the gap between 
their performance and that of the “best”; we thus can observe a rise, “by necessity”, 
in both the levels of improvement and progress. 

The system, however, gives rise to a second type of progress, which takes place 
even when the parameter of progress determined by [G.2] does not undergo an in-
crease; this progress consists in a rise in the average level of the measures of im-
provement for the agents in the system. In fact, it is easy to see – observing the ex-
pression { r∆[1,-1](n, t) [k µ(n, t) + h π(S, t)] } – that the attempts to reach and over-
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take the leader can push the agents to raise their individual performance; even if 
the level of improvement does not change, the system increases the average level of 
individual improvement. 

Naturally “chance” can influence the dynamics of the levels of improvement, and 
thus that of progress, since it can reduce or accentuate the attempt of individuals - 
as well as the leader - to raise their level of individual improvement. 

Due to the effect of chance, some other agent may also substitute the leader in 
terms of improvement. 

Figure 6 represents the dynamics of the indices µ(n, t) for each (t) for a maximal 
system of ten agents.  

The typical MAXIMAL SYSTEM is the “record” system. Each breaking of the record 
leads to a pursuit of the record, with an improvement in the average level of per-
formance. 

The “growing productivity” and “improving quality” systems are also maximal 
systems. Every technological innovation provides an advantage to the company 
that introduces it in terms of productivity or quality; the competing companies 
must, if they do not want to reduce their profits, necessarily follow the leading 
company by trying to overtake it. The latter tries again to maintain its leadership, 
and thus the typical maximal system is triggered. 

 

Fig. 6 - Model of a ten-agent maximal system 
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2.5 MINIMAL SYSTEMS (of flight) of improvement and progress  

MINIMAL SYSTEMS operate to achieve improvement and progress according to a 
logic that is the opposite of that for maximal systems, since the parameter of pro-
gress for the entire system is represented by the minimum level of the parameter of 
improvement reached by the base agents, as shown in model [H]. 

 

 mb(n, t0) = µ(n, t0) ← “CHANCE” 1≤n≤N [H.1] 
[H] MB(t) = π(Sm, t) = Minn µ(n, t) = µ(nm, t)   ∀t ∈ T, … [H.2] 
  mb(n, t+dt) = µ(n, t+dt)  = µ(n, t+dt) = { µ(n, t) +  

+ p∆[1,0](n, t) iR(n, t) [µ(n, t) - π(Sm, t)] + 
+ { r∆[1,-1](n, t) [k µ(n, t) + h π(S, t)] } 1≤n≤N [H.3] 

 

The agent A(nm)  that provides a minimum value for µ(nm, t) can be called the base 
agent, since it is the basis for the flight of the other agents, who tend to increase as 
much as possible the distance between the level of improvement they have 
achieved and the minimal improvement of the base agent.  

In this system, the relation ∆µ(n, t) = µ(n, t) - π(Sm, t) = µ(n, t) - Minn µ(n, t) repre-
sents the quantum of superiority; thus, it can never take on negative values and will 
be equal to zero for the base agent (assuming, for simplicity’s sake, though not 
necessarily, that this is a unique agent). 

 

Fig. 7 - Model of a ten-agent minimal system 
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At time t<t0 we can have µ(n, t) = 0 for each 1≤ n≤N. At time t0 we can instead as-
sume that, “by chance” µ(n, t0) > 0 for some n. We identify the base improvement 
agent (that is, the agent A(nm)) and we take it as the progress indicator. At this 
point the combinatory system begins to operate as a system of flight, since the 
other agents “flee” from the base, trying to increase the gap between their perform-
ance and that of the “worst” agent; we thus witness the increase “by necessity” in 
both the improvement and progress levels. 

However, in this form as well the system brings about a second type of progress 
that is revealed even when the progress parameter identified by [H.2] is not in-
creased, and which consists in the raising of the average level of the improvement 
measures of the system’s agents.  

Here, too, “chance” can influence the dynamics of the improvement levels, and 
thus the progress levels, since it can reduce or accentuate the attempts of the indi-
viduals to raise their individual improvement levels. 

Figure 7 shows the dynamics of the indices µ(n, t) for a minimal system of ten 
agents 

We can consider as minimal the systems of scientific and technological innovation. 
Every scientific discovery or invention is received by the other researchers, who 
use it as the basis for new research, thereby raising the average level of information 
and research. The researchers must further improve their research by producing 
new progress in their fields. 

2.6. Conclusion. The heuristic value of Combinatory Systems Theory 

After having presented the theory of combinatory systems the question arises as to 
why this theory, even though it is based on simple features, is able to explain so 
many and so varied a number of phenomena. 

To answer this we must recall that there are at least three techniques for explaining 
a phenomenon: 

a) the classical explanation, or cause and effect explanation. According to this 
technique, normally used in the experimental sciences, a phenomenon is 
explained by making it derive from others, which are considered to be its 
causes; the explanation is enriched by introducing scientific laws and theories 
that should justify the fact that the phenomenon to be explained depends on the 
causes, taking account of several particular conditions regarding the situation in 
which the observed phenomenon occurs 38;  
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b) systemic explanation. Sometimes there is no cause for a phenomenon; the latter 
is mutually related to other phenomena and, at the same time, affects these 
through a continuous feedback. The explanation thus consists in reconstructing 
the system which the observed phenomenon is a part of; an understanding of 
the systemic ties is enough to understand how the phenomenon is produced as 
a function of all the other phenomena;  

c) procedural explanation; a very common type of explanation, used whenever a 
phenomenon does not derive from others that produce it (causes) or are 
interrelated (system), but is instead the result of the application of some 
procedure (process, programme, formulation, algorithm, etc.) that allows the 
phenomenon to be obtained as the consequence of given, or assumed, rules.  

Darwin’s theory of evolution, for example, represents a powerful procedural 
explanatory tool for phenomena connected with the evolution of species. It is 
clear that even the theory of combinatory systems represents an efficient tool of 
system thinking for the procedural explanation of dynamic phenomena that 
derive from the action of collectivities that can be considered as observational 
units and not only as aggregates of individuals. This theory explains how the 
behaviour of that unit arises and evolves, by examining the interactive 
mechanisms between individual behaviours (micro) and collective ones 
(macro) and by trying to determine the rules that give rise to such behaviour 
(and their effects). Three aspects of this theory make it particularly effective: 

1 - it is not limited to describing the macro behaviour of the unit based on 
general rules or the individual behaviours based only on local rules, but tries to 
uncover and explain above all the feedback between the macro and micro 
behaviours or their effects;  

2 - to understand the phenomena attributable to the action of combinatory 
systems the theory tries to uncover and make clear the necessitating factors 
(that cause the micro behaviour of each agent in the system) and the 
recombining factors (that produce and maintain the unit’s macro behaviour). 
The theory then concludes that, in the presence of suitable necessitating and 
recombining factors, «chance» will trigger the dynamic process of the system 
that «by necessity» is then maintained and influences the individual behaviours;  

3 - the procedural explanation offered by the theory not only allows us to 
understand the operating mechanism that produces the phenomena under 
examination, but also permits us to determine the most effective forms of 
control. 
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3 – Four Systems of improvement and progress 

3.1 Increasing productivity 

The heuristic model can take on the following form: 

MICRO RULE = NECESSITATING FACTOR - If your unit profit falls and you want to 
remain in the economic system as a producer - and if you cannot alter the selling 
price - you must reduce the average unit cost of production and increase 
productivity to the same level - or higher - as the average level of the other 
producers you are competing with, by searching for some productivity factor; 

MACRO RULE = RECOMBINING FACTOR - The introduction of a productivity factor 
improves the average level of productivity in the system, thereby eliminating the 
advantages for the producer; the producers try to equal - or preferably exceed - the 
average level of productivity in the system; 

MICRO-MACRO FEEDBACK = CHANCE AND NECESSITY - The increase in the average 
level of productivity in the system is the result of past micro behaviours, but this 
also conditions the search by the individual producers for new factors of 
productivity. 

3.2 Greater quality  

The heuristic model can take on the following form: 

MICRO RULE = NECESSITATING FACTOR - If your sales fall with respect to 
those of other producers who have introduced quality improvements in their prod-
ucts or processes, and you want to remain in the economic system as a producer - 
and if you cannot influence your productivity by reducing your marginal unit costs 
- you must in turn try to improve the quality of your products; 

MACRO RULE = RECOMBINING FACTOR - An improvement in the quality of 
a product raises the average level of quality of similar products in the productive 
system; the individual quality of each producer must at least equal - or preferably 
exceed - the average level of quality in the system; 

MICRO-MACRO FEEDBACK = CHANCE AND NECESSITY - The improvement in the 
average quality in a productive system is the result of past micro behaviours, but 
this itself conditions the search by individual producers for new qualitative im-
provements. An innovation that produces an increase in quality is introduced "by 
chance"; but the innovation to which the producer turns has a negative effect on 
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sales, and thus on the economic benefits of the other producers, forcing the latter to 
find "by necessity" the means and forms to improve the quality of their products. 

3.3 From Needs To Aspirations 

The heuristic model can be formulated as follows: 

MICRO RULE = NECESSITATING FACTOR - If the quality of your life is below the 
average level, try to improve it; in any case try to increase the level of satisfaction 
of your and your family’s needs and aspirations; 

MACRO RULE = RECOMBINING FACTOR - The increase in the quality of life of 
individuals leads to a rise in the overall quality of life; the search by individuals for 
a larger quantity of goods and of better quality leads to a quantitative and 
qualitative improvement in production; 

MICRO-MACRO FEEDBACK = CHANCE AND NECESSITY - The improvement in the 
average quality of life at the environmental level is the result of past micro 
behaviours, but this conditions the search by the individual consumers for new 
improvements in the quality of life. 

3.4 Scientific and technical progress 

The heuristic model can be formulated as follows: 

MICRO RULE = NECESSITATING FACTOR - If you are motivated toward scientific or 
technological research and you uncover lacunae or the need to complete and 
broaden the patrimony of scientific and technical culture, dedicate yourself to 
research and try to make new discoveries; 

MACRO RULE = RECOMBINING FACTOR - The new discoveries lead to progress in 
the state of science and technology; if, on the one hand, the stock of scientific and 
technological knowledge is enriched, on the other hand knowledge gaps are 
revealed that move people to undertake new research; 

MICRO-MACRO FEEDBACK. CHANCE AND NECESSITY - The individual results of sci-
entific and technological research form the patrimony of knowledge, which in turn 
creates the need for new research. 
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1 The Italian version of the Combinatory System Theory was edited in 1999 by FrancoAngeli, Milan, 
in the book entitled Razionalità e libertà nel comportamento collettivo. The English version of the 
Theory is on the site: www.ea2000.it/cst where you can find the simulation models for the systems 
described in this paper. The site www.ea2000.it contains an interview (Italian version) which clarifies 
many particular topics of the theory. 
2 We can distinguish combinatory systems with respect to the nature of their elements: populations or 
social systems, composed of rational agents; flocks (and variants), composed of instinctive and reac-
tive agents; collectivities in any case or in a more general sense. 
“It appears to leave human organisations and institutions little different in principle from wasp's 
nests or even piles of sand. They can all be said to emerge from the actions of the individuals. The 
difference is that while we assume that, for instance, wasps have no ability to reason - they just go 
about their business and in doing so construct a nest -  people do have the ability to recognise, reason 
about and react to human institutions, that is, to emergent features. Behaviour which takes into ac-
count such emergent features might be called `second order emergence” (Gilbert, 1995). 
3 A combinatory system is ordered , or has a form, if the agents are arranged in an orderly way in a 
vector or even a multidimensional matrix. Systems with a form can have an emerging macro behav-
iour for some observers who have specified their point of view. 
4 For simplicity’s sake such variables are not explicitly included in models [A] and [B]. 
5 From model [A], we can write, more completely, the model: 
 

mb(n, t0) ← “CHANCE” 1≤n≤N [B.1] 
[B] MB(th) = F { MB(th-1), C 1≤n≤N [mb(n, th) }, h = 0, 1, 2, … [B.2] 

mb(n, th+1) = fn{Nn[MB(th)] } 1≤n≤N [B.3] 
 

Model [B] instead assumes that the macro behaviour is determined as well by the past history of the 
system. Equation [B.2] expresses the macro behaviour at a given instant, in part as a function of the 
macro behaviour of the preceding instant. 
In both cases, [A.3] and [B.3] represent the fact that the micro behaviour is independent of the micro 
behaviours from the preceding moments. 
6 For more deta 
7 Evolutionary cybernetics, based on fundamental Darwinian principles, aims to develop a theory to 
explain the process of arranging components to form a pattern different from what could occur by 
chance. 
See PRINCIPIA CYBERNETICA WEB, http://pespmc1.vub.ac.be/BVSR.html  
See also Gould (1994)  
8 The population dynamics approach aims to represent population dynamics in terms of the dynamics 
of the number of agents, for example using Malthusian models and Volterra-Lokte equations in vari-
ous forms (Volterra, 1926).  
9 The systems dynamic approach (Forrester, 1961), connected to Systems thinking, is a method and a 
technique for understanding how the behaviour of concrete collectivities arise and change over time. 
Internal feedback loops within the structure of the system influence the entire system’s behaviour.  
For more, see:  
http://www.albany.edu/cpr/sds/  
http://sysdyn.mit.edu/home.html  
http://www.uni-klu.ac.at/users/gossimit/links/bookmksd.htm  
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10 Synergetics is defined as the science of co-operation, and Haken pioneered the scientific analysis of 
hierarchically organized co-operative phenomena in physics, with applications also in biology and the 
social sciences” (Haken, 1997).  
The synergetics approach provides an exogenous description of complex systems without entering 
into internal operative mechanisms and without examining the micro and macro rules from which the 
behaviour originates (Serra – Zanarini, 1990; Corning, 1995).  
I have specified that I am speaking of Haken’s synergetics, to avoid confusion with  the language 
used by R. Buckminster Fuller and E. Applewhite to construct a metaphysical description of the 
world. 
The integration of geometry and philosophy in a single conceptual system providing a common lan-
guage and accounting for both the physical and metaphysical (Kirby Umer in: 
http://www.teleport.com/~pdx4d/synhome.html) 
11  See: ENCYCLOPAEDIA AUTOPOIETICA WEB; http://www.enolagaia.com/EA.html#. 
The autopoietic approach is based on two fundamental concepts: 1) the idea of behavioral coupling; 
2) the idea of operational closure of the system (Maturana – Varela, 1980; Varela, 1979). With regard 
to the first idea, it is interesting to remember that the idea of behavioral coupling is related, or derived 
from, that of structural coupling. "In general, when two or more plastic dynamic systems interact re-
cursively under conditions in which their identities are maintained, the process of structural coupling 
takes place as a process of reciprocal selection of congruent paths of structural changes in the inter-
acting systems, which results in the continuous selection in them of congruent dynamics of state." 
(Maturana – Guiloff, 1980, p. 139). “Phrased more succinctly, structurally-coupled systems ... will 
have an interlocked history of structural transformations, selecting each other's trajectories." 
(Varela, 1979,. pp. 48-49). 
For more, see: http://www.enolagaia.com/EA.html#S 
12 The simulation of social behaviour by local rules (Gaylord and D’Andria, 1998, pag. xvi) may be 
defined as a “Synchronic analysis [that] rules out the possibility of testing an important class of ex-
planations, those based on process. If you want to understand why a person acts as she does, it is cer-
tainly possible to look around in the immediate environment for an explanation. But often an explana-
tion needs to look also, or perhaps primarily, at events that occurred in the past and at how the pre-
sent situation developed from previous circumstances.” (Gilbert, 1994 and 1995). See also, for further 
details:  
http://borneo.gmd.de/AS/art/index.html. 
13 The Complex systems approach is the new science studying the collective behavior of many basic 
but interacting units which, obeying only  local rules, lead to macroscopic patterns (Stacey, 1995; 
Coveney – Highfield, 1995; Forrest – Jones, 1994). The only reasonable approach to complexity in 
such systems is synthetic: to recognize or to define the micro rules which produce or direct the micro 
behaviours See, also: http://www.necsi.org.  
In other words: not to describe a complex system with complex equations, but to let the complexity 
emerge from the interaction of simple individuals following simple rules. This bottom-up approach is 
called Agent-Based Modeling (ABM) (Axelrod, 1997, Darley and Kauffman, 1997). 
See, for more details: http://www.aridolan.com/ and http://www.swarm.org/csss-tutorial/frames.html. 
“There is no single Theory of Complexity, but several theories arising from the various sciences of 
complexity, such as biology, chemistry, computer simulation, evolution, mathematics and physics. The 
work referred to will be that undertaken over the past three decades by scientists associated with the 
Santa Fe Institute in New Mexico, and particularly that of Stuart Kauffman and John Holland on 
complex adaptive systems (CAS), as well as the work of scientists based in Europe, such as Prigogine, 
Sengers, Nicolis, Allen and Goodwin.” (E. Mitleton-Kelly, 1997; Gell-Mann,1995) .  
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14 The term Complex adaptive systems is used by the Santa Fe scientists to describe complex systems 
which adapt through a process of self-organisation and selection (Holland, 1995; Allen, 1997, Gell-
Mann, 1994). 
Here, we will use the term "complex adaptive system" to refer to a system with the following proper-
ties:  
− a collection of primitive components, called "agents"− interactions among agents and between 

agents and their environment, 
− agents adapt their behaviour to other agents and environmental constraints, 
− as a consequence, system behaviour evolves over time, 
− unanticipated global properties often result from the interactions. 
Agent may be defined as “A natural or artificial entity with sufficient behavioural plasticity to persist 
in its medium by responding to recurrent perturbations within that medium so as to maintain its or-
ganisation.”. For a complete classification of agents see Goldspink, 2000.  
See also: http://www.cs.iastate.edu/~honavar/alife.isu.html 
15 The cellular automata approach, which may be considered the most general approach to simulate 
behaviours in collectivities (Schatten, 1999). A set of rules defines the transition from one state to 
another from one step in the time frame. It is important to note that the rules that define the micro be-
haviour of a cell are only local rules,  in the sense that the state of the cell depends only on one of a 
specified number of neighbours and not on the state of the array. From the theoretical point of view, 
Cellular Automata (CA) were introduced in the late 1940s by von Neumann – A. W. Burks, 1966. 
For details, see: http://www.brunel.ac.uk/depts/AI/alife/al-ca.htm. 
See, for more: Gardner, 1970; Dewdney, 1989; Dewdney, 1990  
(http://www.csd.uwo.ca/faculty/akd/PERSONAL/hp.html). Toffoli – Margolus, 1987 and Ulam, 
1986, 1991. 
One of the most famous examples of the application of the cellular automata approach is the Game of 
Life, invented by John Horton Conway and described by Gardner, 1970.  
For more see: http://serendip.brynmawr.edu/complexity/life.html - conway. 
In the web we can find many applets (Java) to easily play the game; for instance: 
http://www.multimania.com/ldavid/indexe.html  
http://bloch.ciens.ucv.ve/~felix/Java/Simulation/Conway/  
http://hensel.lifepatterns.net/ 
16 The Alife approach refers to cells simulating simple living autonomous reactive agents to show 
how interactions among neighboring agents, following local rules, lead, at a higher level, to complex 
patterns of self-organization (Coveney and Highfield, 1995). 
See, for more details: http://alife.org/index.php?page=alife&context=alife and http://alife.santafe.edu/  
17 Although each ant is characterised by limited capabilities (limited local movement, recognizing 
food or ants, marking territory with chemical traces and so on) and acts blindly according to local 
rules, ant colonies can perform collective tasks which are far beyond the capacities of their constituent 
components (Hölldobler – Wilson, 1990).  
18 The swarm program and the swarm software were launched in 1994 by Chris Langton at Sante Fe 
Institute in New Mexico. The Swarm approach  differs from Ants because the basic architecture of the 
Swarm is the simulation of collections of concurrent agents. 
See, for more: http://www.swarm.org/intro.html,  
and: http://mitpress.mit.edu/journal-home.tcl?issn=10645462  
19 The Floys approach is similar to the Ants and Swarm approaches, but it considers flocking crea-
tures characterized by collective flying or flocking and territorial instinct that act following simple 
local rules. 

 32

http://www.cs.iastate.edu/~honavar/alife.isu.html
http://www.brunel.ac.uk/depts/AI/alife/al-ca.htm
http://www.csd.uwo.ca/faculty/akd/PERSONAL/hp.html
http://serendip.brynmawr.edu/complexity/life.html
http://www.multimania.com/ldavid/indexe.html
http://bloch.ciens.ucv.ve/~felix/Java/Simulation/Conway/
http://hensel.lifepatterns.net/
http://alife.org/index.php?page=alife&context=alife
http://alife.santafe.edu/
http://www.swarm.org/intro.html
http://mitpress.mit.edu/journal-home.tcl?issn=10645462


                                                                                                                            
The more advanced applets allow changing traits and the personality of individual Floys (iFloys & 
eFloys), and also breeding and evolution in the population (eFloys). 
For more details, see: http://www.aridolan.com/JavaFloys.html  
20 The recursive approach considers many phenomena observed in populations (growth and diffusion) 
that give rise to unexpected patterns as the result of a recursive application of simple local syntactical 
rules (alphabet and syntax), often defined in a qualitative way. Such an approach is often an applica-
tion of the cellular automata one. As an example, we can refer to L-systems - short for "Lindenmayer 
System", after Lindenmayer [1972] - that model growth processes which arise from the application of 
sets of rules over symbols (also known as "formal grammars") (Prusinkiewicz – Lindenmayer, 1990; 
Green, 1993, Holland, 1998). 
For more specifications see: http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html  
21 We may also include in the class of recursive systems the fuzzy systems, deriving from the fuzzy 
sets theory introduced by Zadec (Zadec, 1965, Negoita, 1981; Cox, 1994). 
22 “Genetic Algorithms (GAs) were invented by John Holland (1975) and developed by him and his 
students and colleagues. This led to Holland's book "Adaption in Natural and Artificial Systems" pub-
lished in 1975.  
In 1992 John Koza [1992] used genetic algorithms to evolve programs to perform certain tasks. He 
called his method "genetic programming" (GP). LISP programs were used, because programs in this 
language can be expressed in the form of a "parse tree", which is the object the GA works on.  
See: http://cs.felk.cvut.cz/~xobitko/ga/ 
For more details: http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html 
http://pscs.physics.lsa.umich.edu/complexity.html, 
http://home.online.no/~bergar/mazega.htm. 
23 The micro-macro feedback is often positive, in the sense that it amplifies the initial casual impulse. 
At other times it is negative and tends to order the behaviour of the system as a whole  by pegging the 
micro behaviour to the macro behaviour; or, vice-versa, by eliminating the micro behaviours that are 
deviant with respect to the macro behaviour. 
24 In complex systems theory the feedback is considered between agents and not as a determining fea-
ture of the system.  
See: http://pscs.physics.lsa.umich.edu/complexity.html, 
http://home.online.no/~bergar/mazega.htm. 
25 See: di Primio (1999). 
See also: http://ais.gmd.de/~diprimio/bar/workshops/ws4/plain/BAR-Poster-fdp.html  
26 The global "cooperation" of the agents of a dynamic system which spontaneously emerges when an 
attractor state is reached is understood as self-organization. Speaking of an attractor makes sense only 
in relation to its dynamic system; likewise, the attractor landscape defines its corresponding dynamic 
system (Albin, 1998). 
For details, see: http://www.c3.lanl.gov/~rocha/ises.html.  
See also: von Foerster, 1960; Haken, 1977; Prigogine, 1985; Kauffman, 1993. 
27 This is the case of populations of insects which act by creating an “aromatic potential field” by 
spreading pheromones or other permanent messages. With their micro behaviours the agents spread 
pheromone in one site; the increasing concentration of pheromone increases the probability that each 
agent will move in the direction of that site. The micro-macro feedback is quite evident. 
This sequence requires a certain number of insects. Only above a critical activation mass of insects 
can the pheromone amplify and become effective, and lead to some accumulation effect. See: 
Deneubourg – Goss, 1989. 
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28 With combinatory systems, as with any system, in order for micro behaviours to be produced, and 
thus in order for macro behaviour to occur, a supply of energy resources is usually necessary. Along-
side the intial inputs we must also consider the energy inputs of the system, which nevertheless must 
be kept distinct from the initial impulse. We must thus keep in mind that, in order to provide a techni-
cal explanation of the action of such systems, and above all for the purpose of planning them, knowl-
edge of the energy inputs can turn out to be indispensable. 
29 The characteristic of ramification appears in combinatory systems, typically of the diffusion vari-
ety, that have a temporal dynamics during which part of the base is transformed into another combi-
natory system that can subsequently expand, and whose agents have certain features in common with 
the other system and others that are different. 
We can thus imagine that a new branch takes off from the original system and in time can be reab-
sorbed or independently maintained. In the latter case other ramifications can subsequently occur. 
On the description of the branchings of the living, see for example Maturana-Varela, 1987; the au-
thors refer to branching with the meaningful term genetic drift. Monod, 1971 considers the combina-
tory system of evolution and justifies the branchings in terms of random mutations in the genotype 
and of uniform replications of the new genotype; the resulting phenotype change is spread if it has 
advantages for life; otherwise it tends to disappear.  
30 With the expansion effect, the micro and macro rules that initially operated on a limited base of N 
agents are extended to an open set of agents.  
31 Lindgren, 1997 
32 On path dependence and Polya urns see Arthur, 1994. 
33 All the models may be algebraically rearranged and simplified. 
34 We can of course suppose that the probability of speaking is dependent on the rate of talking peo-
ple, so that pR(n, t) can be written as pR(n, N, t). 
We can, on the contrary, simplify the model by supposing time is continuous and all the talking peo-
ple are equal in their micro behaviour, ignoring the probabilities rp(t), sp(n) and bR(n): 

v(t0)← “CHANCE” 
[D] M(t) = [k v(t) + Q r ] (1 – a) 

v(t) = w M(t) + vmin 
35  We can conceive of progress as a consequence of evolution. On the difficulty of developing a the-
ory of progress, see: Heylighen and Bernheim, McCarthy. 
36 The International Index of Social Progress (ISP) and the Weighted Index of Social Progress 
(WISP) are well-established tools developed since 1974 by Richard Estes of the University of Penn-
sylvania's social work faculty. See: http://newciv.org/GIB/BOV/BV-377.HTML  
The index measures and aggregates 46 different factors for each nation. 
For progress in health, go to: 
http://www.chicagometropolis2020.org/indicators/cm-2020/community/commun1.htm 
For progress in human and family conditions, see: http://www.cabq.gov/progress/goalist.html . 
37 These systems are examples of the mechanism of increasing return in collective phenomena (Ar-
thur, 1994). 
38 The classic explanation states: «Phenomenon F has these characteristics because the conditions C 
exist and because laws L and theories T apply». The explanation is valid if the set of assumptions im-
ply as a conclusion precisely the phenomenon being studied. 
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