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Abstract 
 
The macro behaviours of collectivities – that is unorganized social systems (populations, 
collective units, social totalities, groups, pluralities, collections, matrices, etc.) - can produce 
many important phenomena four of which are: the accumulation of objects, the spread of features 
or information, the pursuit or exceeding of a limit, and the attainment and maintenance of an 
order among the micro behaviours. A very relevant fifth effect, which includes the others, is the 
interdependent dynamics of individual improvement and collective progress in the overall state of 
a collectivity (defined in opportune ways). 
If we accept the traditional definition of self-organization as a macro behaviour in which the 
micro behaviours appear to be directed, or organized, by an invisible hand in order to produce the 
emerging phenomenon represented by the formation of ordered structures, of recognizable 
patterns, then all five of the collective phenomena can be defined as self-organization. 
To understand, explain and, to a certain extent, control these collective phenomena I suggest the 
simple Theory of Combinatory Systems. 
By Combinatory System I mean an unorganized system made up of a plurality of similar 
elements; the macro behaviour of the system, as a unit, derives from the combination of the 
analogous behaviours of its similar elements, according to a feedback relation between micro and 
macro behaviours. 
This internal feedback between micro and macro behaviours guarantees the maintenance over 
time of the system’s macro behaviour and directs the micro behaviour When the system starts up 
“by chance”, it then maintains its behaviour “by necessity”, as if a Supreme Authority regulated 
its time path and produced the observable effects and patterns.  
This paper presents the fundamental ideas and mechanisms that underlie these systems and some 
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models showing the action of the self-organization. 
Because of the extreme wealth of literature on systems I’ve made the choice to mention only the 
fundamental and well-known (or the very specific) contributions and web sites. 
 
Keywords: combinatory systems, micromotives and macrobehaviour, populations and 

collectivities, path dependence, chaos in economics 
 

 

1.  Introduction. Macro behaviour of collectivities. Two different 

approaches 
 

I define collectivity (social system, population, collective unit, social totality, group, 

plurality, collection, matrix, and so on) as a set of similar, unorganized elements, or agents, 

that produce analogous micro behaviours (which lead to similar micro effects), but which, as 

a whole, produce a macro behaviour (and at times a macro effect or a recognizable pattern) 

which is not included in advance in the operating programme of the agents’ behaviour. 

Collectivities have always been a very complex subject of study, and for this reason a 

fascinating and interesting one as well.  

If observed from a certain distance collectivities appear distinct with respect to the 

individuals, and thus seem able to produce an autonomous macro behaviour due to the 

interactions of the micro behaviours. 

Since Schelling’s [1978] attempt, in the very famous Micromotives and macrobehaviour, 

to offer a logical explanation for collective macro behaviours shown by intelligent agents, 

and Conway’s discovery of the fantastic world of Life, the study and the simulation of the 

behaviour of collectivities has become a fruitful field of research 1. 

It is rather difficult to provide a list of theories, models and instruments usefully available 

to explore this research field; without pretending to be exhaustive we can classify the studies 

of collectivities into two main kinds of approaches: 

1. the macro or analytic approaches which aim to build models of systems capable first 

of all of justifying the macro behaviour; the micro behaviours are considered unobservable or 

not important because the relations that link the elements are too complex and numerous; the 

abundance of connections make the construction of meaningful models based on elements 

very difficult; so the macro approach produces a macro description of the behaviour of 

collectivities. Included in this typology are: 

a. the cybernetic approach, 
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b. the systems dynamic approach, 

c. the complex systems approach, 

d. the adaptive complex systems approach, 

e. the synergetic approach, 

f. the autopoietic approach; 

2. the micro or syntetic approaches whose models are built exclusively (or prevalently) 

by studying the micro behaviours and the micro rules which connect them 2. The macro 

behaviour is a consequence – often unexpected – of the action of these connections. Forming 

part of this typology are the models worked out by the Cellular Automata Theory, which 

allow us to explore the systems by simulating Artificial Life. We can consider, in particular: 

a. the Cellular Automata approach, 

b. the Alife approach; 

c. the Ants approach; 

d. the Swarm approach, 

e. the Floys approach, 

f. the Genetic Algorithms approach. 

It is clear that the progress in the computer simulation of the behaviour and evolution 

mechanisms and the first technological realizations (artificial life environments, robots, 

intelligent toys, self-reproducing machines, agents on the web) are creating the basis for a 

new age: the coming of artificial beings and artificial societies  3. 

 

 

2.  The macro approaches. A short survey 
 

We can consider in this approach: 

1) The cybernetic approach, in particular evolutionary cybernetics, which aims to 

develop a theory to explain the process of arranging components to form a pattern different 

from what could occur by chance, by some criterion or better than it was before, and attempts 

to provide generalizations about how cells, or organisms interact or how and why people 

work together and form larger unities 4. 

We can include in the cybernetic approach the models of population dynamics, which try 

to represent population dynamics in terms of the dynamics of the number of elements, using 

Malthusian models and Volterra-Lokte equations, in various forms 5. 
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2) The systems dynamic approach – which may be viewed as an extension of the 

cybernetic one – is a method and a technique for understanding how the behaviour of 

concrete collectivities arise and change over time. Internal feedback loops within the 

structure of the system influence the entire system behaviour 6. 

3) The complex systems approach is a new field of science studying the collective 

behaviour of many basic but interacting units 7. “To be more precise, our definition is that 

complexity is the study of the behaviour of macroscopic collections of such units that are 

endowed with the potential to evolve in time. Their interactions lead to coherent collective 

phenomena, so-called emergent properties that can be described only at higher levels than 

those of the individual units” 8. There are three interrelated approaches to the modern study 

of complex systems: (1) how interactions give rise to patterns of behaviour; (2) understanding 

the ways of describing complex systems; and (3) the process of formation of complex 

systems through pattern formation and evolution 9. 

4) The adaptive complex systems approach, which studies how complex systems interact 

and exchange information with their environment to maintain their internal processes over 

time 10 and to develop some form of cognition 11. Here, we will use the term "complex 

adaptive system" to refer to a system with the following properties:  

− a collection of primitive components, called "agents" 12, 

− interactions among agents and between agents and their environment, 

− agents adapt their behaviour to other agents and environmental constraints, 

− as a consequence, system behaviour evolves over time, 

− unanticipated global properties often result from the interactions 13. 

The theory of adaptive complex systems presents three types of analysis (we continue, of 

course, to speak in general terms): 

a. the analysis is aimed mainly at the external dynamics of the system; that is, the macro 

behaviour. The emerging properties are studied in terms of macro variables associated with 

the macro behaviour. This is the synergetic approach; 

b. the analysis studies how adaptive complex systems develop and maintain over time 

the network of vital processes. This is the autopoiesis approach; 

c. the analysis considers the component elements of adaptive complex systems as 

species and studies the processes of adaptation to environmental variations (a succession of 

micro mutations) that follow from the reciprocal local interactions according to rules 

established over time or variants based on other well-known rules. This is the Artificial life 
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(A-life) approach that employs genetic algorithms, cellular automata, neuronal networks, and 

intelligent agents (L-systems, ants, swarms, etc.). 

5) In the area of adaptive complex systems, Haken’s synergetics approach is the theory of 

cooperative behaviour in active systems 14. The synergetics approach provides an exogenous 

description of complex systems without entering into internal operative mechanisms and 

without examining the micro and macro rules from which the behaviour originates 15. In other 

words, in the synergetics approach Complex systems are composed of a number of elements 

that is so high they can only be analysed and described in terms of a limited number of 

parameters defined as order parameters.16 

6) In the area of adaptive complex systems, the autopoietic approach is the theory of self-

maintaining systems 17. The autopoietic approach to adaptive complex systems is based on 

two fundamental concepts: 1) the idea of behavioural coupling; 2) the idea of operational 

closure of the system. Whereas in complex systems the behaviour of each agent may be 

thought of as depending on the behaviour of other agents and on the collectivity in general, 

we can argue that "...the autopoietic conduct of an organism A becomes a source of 

deformation for an organism B, and the compensatory behaviour of organism B acts, in turn, 

as a source of deformation for organism A, whose compensatory behavior acts again as a 

source of deformation for B, and so on recursively until the coupling is interrupted." 18. So, 

during the course of behavioural coupling, each participating autopoietic agent is, with 

respect to the other(s), a source (and a target) of compensatory perturbations for each other. 

These are 'compensatory' in the sense that (a) there is a range of 'compensation' bounded by 

the limit beyond which each system ceases to be a functional whole and (b) each iteration of 

the reciprocal interaction is affected by the one(s) before 19. 

 

 

3. The micro approaches. A short survey 
 

The common fundamental idea of the micro approaches is that the macro behaviour of 

collective systems is determined by the interaction of the micro behaviour of the agents 

which form the system, acting isolated or in teams 20. The only reasonable approach to 

complexity in such systems is synthetic: to recognize or to define the micro rules which 

produce or direct the micro behaviours. In other words: not to describe a complex system with 
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complex equations, but let the complexity emerge by the interaction of simple individuals 

following simple rules.  

The synthetic approach is based on three main ideas: 

− the idea that complex, sophisticated, adaptive solutions can be generated by automatic, 

blind, knowledge-lacking mechanisms (Evolution).  

− the idea that complex systems, such as life, are actually the emergent behaviours of 

systems with many elements that operate according to simple, local rules (Artificial Life).  

− the idea that a personal computer can be an important scientific laboratory tool, and that 

new insights and new knowledge can (potentially) be achieved by using inexpensive 

equipment for conducting scientific experiments from one's home 21. 

We can include in this approach: 

1) The cellular automata approach, which may be considered the most general approach 

to simulate behaviours in collectivities; the theory of cellular automata builds mathematical 

models of a system which consists of an array of cells (possibly in more than one dimension) 
22. A set of rules defines the transition from one state to another from one step in the time 

frame. It is important to note that the rules that define the micro behaviour of a cell are only 

local rules,  in the sense that the state of the cell depends only on one of a specified number 

of neighbours and not on the state of the array 23. 

2) The Alife approach may be considered a specific case of the cellular automata 

approach, because it refers to cells simulating simple living autonomous reactive agents 24 to 

show how interactions among neighbouring agents, following local rules, lead, at a higher 

level, to complex patterns by self-organization 25.  

The Alife approach presents many interesting variations, depending on the supposed 

nature of the agents. The most well-known are: Ants, Swarm and Floys. 

3) The Ants approach considers ant colonies as collections of reactive agents in order to 

study the self-organization and sociogenesis in ant and in wasp colonies 26. Although each ant 

is characterised by limited capabilities (limited local movement, recognizing food or ants, 

marking territory with chemical traces and so on) and acts blindly according to local rules, 

Ant colonies can perform collective tasks which are far beyond the capacities of their 

constituent components 27.  

4) The Swarm approach shows logic and patterns of behaviour similar to Ants but differs 

from them because the basic architecture of the Swarm is the simulation of collections of 

concurrent agents 28. 
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5) The Floys approach is similar to the Ants and Swarm ones, but considers flocking 

creatures characterized by collective flying or flocking and territorial instinct that acts 

following simple local rules. They differ from most other flocking Alife animals by having 

the following properties: 

− territorialism (they defend their territory against intruders)  

− potential individualism (each can possess a different personality)  

− ability to evolve (using a Genetic Algorithm code) 29. 

6) The recursive approach considers many phenomena observed in populations (growth 

and diffusion), giving rise to unexpected patterns as the result of a recursive application of 

simple local syntactical rules (alphabet and syntax), often defined in a qualitative way. Such 

an approach is often an application of the cellular automata one. As an example, we can refer 

to L-systems that model growth processes which arise from the application of sets of rules 

over symbols (also known as "formal grammars") 30 and to fuzzy systems 31. 

7) The genetic algorithms approach represents a model of machine learning which 

simulate its behaviour following the metaphor of the processes of evolution in nature 32. The 

machine works with a population of individuals represented by a set of character strings (or 

chromosomes). A recursive process of crossover operations – generally stochastic – simulate 

the reproductive behaviour; a defined environment generates the selection process as a 

function of the fitness measure of the individual that is supposed to compete with other 

individuals in their environment. Some genetic algorithms use a function of the fitness 

measure to select individuals (probabilistically) to undergo genetic operations such as 

crossover or reproduction, and this leads to the propagation of unaltered genetic material 33. 

 

 

4. Self-organization in collectivities. The Combinatory Systems approach 
 

The macro behaviours of the collectivity can produce many important phenomena or 

effects, four of which are: the accumulation of objects, the spread of features or information, 

the pursuit or exceeding of a limit, and the attainment and maintenance of an order among the 

micro behaviours. A very relevant fifth effect, which includes the others, is the 

interdependent dynamics of individual improvement and collective progress in the overall 

state of a collectivity (defined in opportune ways). 

If we accept the traditional definition of self-organization as a macro behaviour in which 
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the micro behaviours appear to be directed, or organized, by an invisible hand in order to 

produce the emerging phenomenon represented by the formation of ordered structures, of 

recognizable patterns, then all the collective phenomena mentioned before can be defined as 

self-organization 34. 

To understand, explain and, to a certain extent, control these collective phenomena I 

suggest the simple Theory of Combinatory Systems. 

In plain words, by Combinatory System I mean an unorganized system made up of a 

plurality of similar elements; the macro behaviour of the system, as a unit, derives from the 

“combination” of the analogous behaviours of its similar elements, according to a feedback 

relation between micro and macro behaviours. 

This internal feedback between micro and macro behaviours – or between their micro and 

macro effects – guarantees the maintenance over time of the system’s dynamics. When the 

system starts up “by chance” it then maintains its behaviour “by necessity”, as if a Supreme 

Authority regulated its time path and produced the observable effects and patterns. 

The existence of the micro-macro feedback is the condition for a complex system to be 

conceived as a combinatory system. 

 

 

5.  A general model of combinatory system 
 

In order to give a simple illustration we shall indicate by S(t, N) = [t, A(1), ..., A(n), ... , 

A(N)] a non-ordered system formed by N agents (or elements), A(n, t), observed for t∈T, 

appropriately defined 35.  

Let us suppose that each A(n, t), 1≤n≤N, has a state – denoted by an opportune set of 

variables – and also that it can change its state for t∈T, showing a micro behaviour as the 

movement of the state values in T. 

Thus we can write mb(n, t)t∈T for the micro behaviour of the element A(n) observed in 

period T. 

Let us also suppose that we can define {C1≤n≤N [mb(n, th)]} for a combination of those 

micro behaviours, at time th, where C1≤n≤N indicates a set of combination operation(s), 

appropriately specified (sum, product, average, min, max, etc.), of values for state variables 

associated with the N elements 36. 

Moreover, we write MB(th) = F {C1≤n≤N [mb(n, th)]} to represent  the macro behaviour of 
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S(t, N), defined as a recombining function F (or macro rule) of the combination of the micro 

behaviours, and mb(n, th+1) = fn {Nn[MB(th)] to represent the micro behaviour, where Nn 

represents the necessitating operation(s) that link(s) the micro behaviours to the macro 

behaviour (or the micro and macro effects). 

The combinatory system, observed on a discrete time scale, can be represented as follows 
37: 

 

mb(n, t0) ← “CHANCE”   1≤n≤N  [A.1] 

[A] MB(th) = F {C1≤n≤N [mb(n, th)]}  h= 0, 1, 2, … [A.2] 

mb(n, th+1) = fn {Nn[MB(th)]}   1≤n≤N  [A.3] 

 

Equation [A.1] shows that the first input is considered to be the product of chance. 

In equation [A.2] I have indicated the same time reference (th), since usually the macro 

behaviour is contemporaneous to the micro behaviours, as it is derived from these. 

In model [A] we assume absolute independence of the macro behaviour from the past 

history of the system; in fact, equation [A.2] simply describes the macro behaviour as a 

function F of the combination of the micro behaviours.  

Equation [A.3] instead describes how the subsequent micro behaviour mb(n, th+1) 

depends on the past macro behaviour (again referring to th), according to a necessitating 

function fn (or micro rule) that we assume is specified for every A(n, t) and according to the 

necessitating operation(s) represented by Nn.  

If a probability is associated with the transition of state of each element, then the 

combinatory system is stochastic; the macro behaviour depends on the probabilistic micro 

behaviours. In the opposite case it is deterministic. 

A schematic model of combinatory system is shown in figure 5. 

 

 

6.  Irreversible and reversible combinatory systems. Path dependence and 

chaos 
 

The preceding models [A] are different depending on whether or not the system is 

deterministic or probabilistic.  

In social combinatory systems, whose structure is composed of cognitive agents, that is of 
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elements that can receive information from other agents and can decide to change their state, 

the probabilities play an essential role for understanding and modelling the systems. 

In probabilistic combinatory systems the micro behaviour depends on a probability of 

transition of state, and is carried out in a period of transition of state.  

Both probabilities and periods of transition of state nevertheless depend on the state of 

the system, so that, in turn, the micro behaviours are conditioned by the macro behaviour of 

the entire system. 

The probability of transition should offer numerical information on all the characteristics 

observable, or even imaginable, in the element A(n, t), such as to make a change of state 

possible, plausible, probable, likely. This thus expresses the influx of necessitating factors 

that impose on A(n, t) its own micro behaviour. In other words, it should express the 

likelihood of a given micro behaviour and a given micro effect which can potentially be 

carried out and obtained from A(n, t). 

Due to the existence of the micro-macro feedback, if the state of the system derives from 

the state of its elements, this nevertheless influences the micro behaviours and the states of 

the elements in the base according to the probability of transition for each one; a probability 

that depends, in turn, on the state of the system. 

We must therefore take account of this feedback, for example by writing that: 

1) the state of each element depends on the probability that characterizes it; but this 

probability is in turn a function of the state of the system;  

2) the length of the period of transition of state of each element that is modified is also a 

function of the state of the system. 

The combinatory systems that are most interesting and easiest to represent are the 

irreversible ones, where both the micro and macro behaviour produce permanent effects by a 

process of imitation and social learning (residential or industrial settlements, the maintenance 

of the language, the spread of epidemics) 38. 

Irreversible systems explain almost all the cases of path dependence, as we can see from 

[A.1] and [B.1] in the previous models 39. 

In regard to combinatory system theory, recognizing the phenomenon of path dependence 

is not a theory but simply the observation that the dynamic of a social system – its macro 

behaviour or its macro effect – can be thought to depend on initial chance (dependence from 

initial conditions) and on the recombining rules of the micro behaviours of the agents. 

Thus, the individual choices of the agents lead to micro behaviours deriving from the past 

history, that is from the macro behaviour (history dependence). 
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In this sense the path dependence is the proof of the action of the micro-macro feedback, 

even if path dependence theory does not include this mechanism in the explanation of the 

path dependence. 

The deterministic action of path dependence, the necessity, is not a consequence of the 

past evolution of the path of the system, but of the micro-macro feedback, and then of the 

necessitating and recombining factors. 

Ignoring micro macro feedback leads to a second consequence: the path dependence 

theory focuses particularly on the micro behaviour, considering the macro behaviour as a 

constraint to the individual freedom to decide. 

The Combinatory Systems Theory also considers reversible systems; that is, systems 

whose elements may again show a state that occurred in the past, so that they may present a 

cyclical behaviour and, under certain conditions concerning the probability function 

regarding the transition of state of the elements, a chaotic one as well 40. 

Examples of reversible systems are those of diffusion and dissemination (fashion and 

contagion), whose elements may present a state chosen in a "repertoire” 41. 

 

 

7.  An example - The chaotic behaviour in reversible probabilistic systems 
 

As an example, consider the case of a non-ordered system where every A(n, t) is a 

Bernoulli random variable that, at any t∈T, shows only two states: mb(n, t) = [1 or 0].  

The macro behaviour is MB(t) = N(t), 0≤N(t)≤N, since for [A.2] we have simply 

established that R1≤n≤N[mb(n, t)],= ∑1≤n≤N [mb(n, t)].  

We also suppose that the probabilities of transition from state “0” to state “1”, p(n, N), 

are defined for each A(n, t) and for each 0≤N(t)≤N, as well as the probability q(n, N) = 1 - 

p(n, N); to simplify, these probabilities might be assumed to be the same for each element, so 

that we write p(N) = 1- q(N). 

We assume there is a feedback between the micro and macro behaviour, in the sense that 

the state of each element depends on the probability p(n, N), which in turn depends on the 

state of the system, N(t), which defines the macro behaviour. 

Let us simply assume that the function p(n, N) takes on the following values: 

p(n, N) = p(N) = 2(N/N) if 0<N≤N/2 

p(n, N) = p(N) = 1-[(2N-N)/N] if N/2<N≤N. 

11 



If we simulate the micro behaviour by some experiment that generates random numbers 

for each element, we observe that after the random initial impulse that shapes mb(n, t0), the 

combinatory system presents a chaotic macro behaviour MB(t) = N(t). 

Figure 1 shows the results of three simulations generating the macro behaviour of the 

system outlined above, supposing N = 50 and N(1) = 4 due to initial chance. 

Figure 2 shows the simulations of the macro behaviour changing the initial state. 

Figure 3 represents the results of the simulation of the system assuming that the function 

p(n, N) increases straight line and assumes the value 1 for N(t) = (4/5 N) and then decreases 

straight line to 0. 
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Fig. 1 – Reversible probabilistic combinatory system with chaotic macro behaviour 

changing random numbers - N = 50 and N(1) = 4  
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Fig. 2 – Reversible probabilistic combinatory system with chaotic macro behaviour 

changing initial conditions, keeping the same random numbers - N = 50 and N(1) = 4  
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Fig. 3 – Reversible probabilistic combinatory system with chaotic macro behaviour 

changing probabilities - N = 50 and N(1) = 4. Probability increases straight line to 1 for 

N = 40 and then decreases to 0 for N=50. 
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Figure 4 show the micro and the macro behaviours of the real reversible probabilistic 

combinatory system that produces the phenomenon of a murmur arising in a crowded room, 

which all of us can observe very easily. 

 

Fig. 4 - Model of Murmur and Noise system with 20 agents 
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8.  Conclusions. The main characteristics of the combinatory system 

approach 

 

From the previous examples it emerges that combinatory systems may be viewed as 

recursive complex systems which differ from other models that explore collectivities – 

models that we have summarized in the macro and micro approaches (evolutionary 

cybernetics, autopoiesis, cellular automata, ants, swarm, etc.) – with regard to some 

fundamental characteristics. 

The first characteristic concerns the internal structure of combinatory systems: they are 

non-organized systems that show a self-organization. 

Systems, in general – and behavioural ones in particular – can be observed from both an 

exogenous and endogenous point of view. 

Observing the system from an exogenous point of view means that the observer is not 

interested in the nature of the elements and the relationships that compose the structure of the 

observed system. The exogenous perspective  brings out solely the possibility of describing 

the dynamics of the system in terms of variables, whether these are associated with the 
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system as a unit characterized by inputs, outputs and external feedback connections 

(functional description) or associated with the states of the structure (structural description) 
42.  

When instead the observer analyses the nature of the elements that make up the structure 

of the system, he places himself in an endogenous perspective 43; that is, he undertakes an 

approach that leads him to "enter into" the system in order to search for and analyze the 

different nature of the elements that form its internal structure - and characterize its state - 

allowing them to interact and produce the micro-macro feedback and produce the structural 

behaviours.  

From this point of view, and with regard to the nature of the elements in the structure, it is 

possible to distinguish among organized, or operative systems, and non-organized, or 

combinatory systems. 

We define as organized those behavioural systems whose structure is composed of 

elements, defined as organs, which differ from each other, since they have a precise spatial 

and temporal placement, carry out a specialized function in relation to the entire structure, 

and have a specific functionality that delimits the admissible interactions with the other 

organs. 

With endogenous observation, on the other hand, combinatory systems are quite different 

from organized systems; they are made up of elements, defined as agents, which present a 

similar nature, or similar significance, and develop analogous interactions (behaviour, 

processes); these interactions, combining together, produce emerging effects (the macro 

behaviour or macro effects of this behaviour) with reference to the unit; since the elements 

are similar they do not constitute organs, and thus such systems are unorganized. 

For this reason combinatory systems are clearly distinct from organized systems, even if 

they may show some form of self-organization, in the sense that the agents may adjust and 

specialize their micro behaviours and produce a macro behaviour that can lead to some macro 

phenomenon, macro effect, or recognizable pattern 44. 

The second characteristic regards simply the mechanism by which combinatory systems 

develop the self-organization that produces the collective phenomena. 

The central idea is that in combinatory systems the collective phenomena are produced 

from a combination of the micro behaviours of agents but, at the same time, they condition 

these as the result of a micro-macro feedback relationship that seems to guide the individual 

behaviours and produces the collective phenomena.  

This approach is quite different from that of complex systems  – and in particular from 
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the micro approaches – precisely in that the operating rules, describing the behaviour of the 

system, must in some way include not only local rules but also the feedback between the 

micro and macro behaviours 45. 

This means that we can view a collectivity as a combinatory system only if the behaviour 

of agents is not exclusively determined by local rules but also by a general micro-macro 

feedback rule, so that we must observe, or assume, mutual interdependence: the micro 

behaviours produce the macro behaviour, but this influences the micro behaviours in a micro-

macro feedback which acts for many cycles 46. 

The macro behaviour – or its macro effects – may be thought of as a dynamic attractor to 

which the micro behaviour tend and modify over time 47. For this reason we cannot consider 

in general the ants, the swarm and, more generally, the cellular automata approaches as 

examples of combinatory systems, except in the case in which the macro effect may affect 

the micro behaviours of the agents in some way 48. 

The combinatory systems approach is neither a macro approach nor a micro approach; it 

is a micro-macro approach. 

Recognizing the existence of a micro-macro feedback is indispensable for interpreting 

collective phenomena as deriving from a combinatory system: the state of the system at a 

given time must depend on the state of its elements; but this in turn must depend on the state 

of the system. The micro-macro feedback generates a synergetic effect that produces self-

organization and emerging macro behaviours, which are only attributable to the collectivity. 

We can thus say that in combinatory systems the micro behaviours create a pattern in the 

collectivity – normally invisible to the agents (according to third characteristics) – and this 

pattern influences or determines the micro behaviour of the agents 49. 

We must nevertheless recognize also that each agent is normally blind to the macro 

behaviour of the system while being aware of the micro behaviours of some other agents; 

from this we immediately see the third characteristic of the combinatory systems: they are 

incomplete and limited information systems: 

− they are incomplete information systems in that each of the A(n) ∈ S(t, N) produce their 

own micro behaviours without considering the macro behaviour of the unitary system as 

information (except as an extreme case of a completely observable macro effect);  

− they are limited information systems in that the micro behaviour of A(n) depends on 

information about the micro behaviours (which occur or is only expected or foreseen) of a 

limited number of other neighbourhoods of A(n) (defined in an opportune way 50), exactly as 
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in a cellular automaton.  

The third characteristic is not in contrast with the second; they simply derive from 

different points of view: 

− from an external point of view, the observer must recognize the macro behaviour and 

the micro-macro feedback action in order to define and build a model of the combinatory 

system;  

− from an internal point of view the agents normally are unaware of the macro behaviour 

and act according to limited information. 

In many cases, however, this third characteristic seems to fail because we can observe 

agents acting according to some general pattern related to the system. There is no 

contradiction: we must simply distinguish between the micro and macro behaviours and 

micro and macro effects in the environment 51. 

In these cases the micro behaviours of the agents are related to some observable macro 

effects and the micro and macro feedback operates between the micro behaviour and the 

macro effects. 

The fourth characteristic is connected to the fact that the combinatory system – even if its 

behaviour is deterministic - usually requires a random input to begin the micro-macro 

feedback. The output is entirely determined by the structural dynamics of the system 52, 

according to the micro rules and the micro-macro feedback 53.. 

The combinatory systems are closed systems; their dynamic is only due to the joint action 

of "chance" and "necessity"; they can thus also be called "chance-necessity" 54 systems and as 

such are opposed to open systems, which are typically "cause-effect" systems 55. 

According to the fourth characteristic we may observe that, in general, combinatory 

systems begin to operate when there is a change in the state of a minimum number of 

elements, and it ceases to develop its macro behaviour when there is a change in the state of a 

maximum number of elements. 

This means that the micro-macro feedback is manifested only if the number of the A(n, t) 

that develop the micro behaviour exceeds a minimum number (critical activation mass) and 

remains below a maximum number (critical saturation mass), which is defined each time for 

each specific system. 

We must now consider a very important fifth characteristic: combinatory systems 

generally are set off by chance, but if they reach the critical activation mass  they maintain 

their dynamics by necessity, due to the presence of necessitating and recombining factors. 
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Therefore, to interpret the activity of combinatory systems we need always to understand 

the nature of both the recombining factors and the necessitating ones since, without the joint 

action of these factors, there would be no micro-macro feedback and the collective 

phenomena the theory tries to explain would not be produced. 

Chance by itself is never enough to maintain the macro behaviour, only to set it off. A 

necessitating factor (a constraint, a rule, a condition, a law, a conviction, an imitative act, 

etc.) must operate on the single elements to force each of these to adapt its micro behaviour 

to the system's macro behaviour. 

Often these necessitating factors result from obligation, imitation, convenience, utility, 

desire, or the operative programme of the individual elements. The agents can be aware of 

these (I want to adjust my step to the marching step of my companions) or not (I don’t want 

to transmit the flu virus, but this takes place without my being aware of it) 56. 

The existence of one or more necessitating factors is indispensable but not yet sufficient; 

the system must also be able to recombine the micro behaviours (or the micro effects) in 

order to produce the macro behaviour (or the macro effect); some recombining factors (rule, 

convention, algorithm, etc.) must operate in the system so that, through the micro-macro 

feedback, the necessitating factor can also operate. 

While the recombining factor characterizes the macro rules, the necessitating factor 

characterizes the micro ones. 

In order to explain the activity of combinatory systems we must understand the nature of 

the macro rules, which specify the recombining factor, and of the macro rules, which specify 

the necessitating factor; the joint action of these factors gives rise to and maintains the macro 

and micro behaviours. 

Other relevant characteristics (I mention only) concern the fact that, even though 

combinatory systems are unorganized and closed systems, they can organize 57 themselves 

into specialized subsystems and show ramifications 58 and can expand 59 their effects on 

elements belonging to a vaster environment. 

Figure 5 presents a simple model that includes all the above-mentioned elements 

according to model [A]. 
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Fig. 5 – The fundamental elements of a combinatory system 
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1 The Game of Life was invented by John Horton Conway and described by Gardner [1970]. For more see: 
http://serendip.brynmawr.edu/complexity/life.html - conway. 
The Life's game is an example of Cellular Automata Theory; it consists of a table of cells and a set of local and 
irreversible rules which describe how to find successive generations of the cells; the game of Life is thus an 
efficient tool to simulate the evolution of, for example, a colony of living organisms. 
In the web we can find many applets (Java) to easily play the game; for instance: 
http://www.multimania.com/ldavid/indexe.html  
http://bloch.ciens.ucv.ve/~felix/Java/Simulation/Conway/  
http://hensel.lifepatterns.net/  
2 The simulation of social behaviour by local rules may be defined as a “Synchronic analysis [that] rules out the 
possibility of testing an important class of explanations, those based on process. If you want to understand why 
a person acts as she does, it is certainly possible to look around in the immediate environment for an 
explanation. But often an explanation needs to look also, or perhaps primarily, at events that occurred in the 
past and at how the present situation developed from previous circumstances.”; see: Gilbert [1995]; see also:  
and Gilbert [1994] 
 
3 For a general survey, see: http://www.generativeart.com/  
4 The evolutionary cybernetics develops a complete philosophy or "world-view", based on fundamental 
Darwinian principles: "Blind Variation and Selective Retention" (BVSR) is a phrase introduced by D. T. 
Campbell [1960], as a way of describing the most fundamental principle underlying Darwinian evolution. 
(Campbell only applied it to the evolution of knowledge, but we here apply it in the most general context). The 
BVSR formula can be understood as a summary of three independent principles: blind variation, asymmetric 
transitions, and selective retention.”. See PRINCIPIA CYBERNETICA WEB, http://pespmc1.vub.ac.be/BVSR.html  
5 Volterra [1926] suggested a simple model of a prey-predator type with the intent of explaining oscillatory 
phenomena relating to the co-evolution of some kind of fish in the Adriatic sea. 
If N(t) indicates the population of the prey and P(t) the one of predator at time t, then the model may be written 
as: 

(prey) dN/dt = N (a - bP) 
(predators) dP/dt = P (cN - d)  

 
6 The field was developed initially from the work of Forrester [1961] as Systems (Industrial) Dynamics.  
Systems Dynamics is connected to Systems thinking, which looks at exactly the same kind of systems from the 
same perspective. It constructs the same causal loop diagrams. But it rarely takes the additional steps of 
constructing and testing a computer simulation model, and testing alternative policies in the model. 
For more, see:  
http://www.albany.edu/cpr/sds/  
http://sysdyn.mit.edu/home.html  
http://www.uni-klu.ac.at/users/gossimit/links/bookmksd.htm  
7 Gell-Mann [1995] traces the meaning to the root of the word complexity. Plexus means braided or entwined, 
from which is derived complexus, meaning braided together, and the English word "complex" is derived from 
the Latin. Complexity is therefore associated with the intricate inter-twining or inter-connectivity of elements 
within a system and between a system and its environment. 
 “There is no single Theory of Complexity, but several theories arising from the various sciences of complexity, 
such as biology, chemistry, computer simulation, evolution, mathematics and physics. The work referred to will 
be that undertaken over the past three decades by scientists associated with the Santa Fe Institute in New 
Mexico, and particularly that of Stuart Kauffman and John Holland on complex adaptive systems (CAS), as well 
as the work of scientists based in Europe, such as Prigogine, Sengers, Nicolis, Allen and Goodwin.”. See E. 
Mitleton-Kelly [1997].  
8 Coveney - Highfield [1995] 
“The underlying rules of the system are changing over time, which means that different agents behave 
according to different rules at different times.  . . . Because of these difficulties, a class of models, variously 
called "artificial worlds", "particle-based", and "agent-based", have been a popular approach to studying 
CAS.”  
For more details: Forrest – Jones [1994]  
9 A pattern is a property of the system as a whole but is not a property of small parts of the system. ...a property 
of a system that allows its description to be shortened as compared to a list of the descriptions of its parts. See, 
for example: http://www.necsi.org. See, also: Stacey [1995]. 

25 

http://serendip.brynmawr.edu/complexity/life.html
http://www.multimania.com/ldavid/indexe.html
http://bloch.ciens.ucv.ve/~felix/Java/Simulation/Conway/
http://hensel.lifepatterns.net/
http://www.generativeart.com/
http://pespmc1.vub.ac.be/BVSR.html
http://www.albany.edu/cpr/sds/
http://sysdyn.mit.edu/home.html
http://www.uni-klu.ac.at/users/gossimit/links/bookmksd.htm
http://www.necsi.org/


                                                                                                                                                        
 
10 The term Complex adaptive systems is used by the Santa Fe scientists to describe complex systems which 
adapt through a process of self-organisation and selection. However, physical, chemical and biological systems 
are not conscious and do not 'learn' in the sense that humans learn. The term complex evolving system may be 
used to distinguish human from other complex systems. In particular, Complex evolving systems refers to those 
systems which are able to learn and which change their internal structure and organisation over time, thus 
changing the behaviour of individual elements. See: Allen [1997]. 
11 "A cognitive system is a system whose organization defines a domain of interactions in which it can act with 
relevance to the maintenance of itself ..."; see: Maturana - Varela [1980], p. 13. 
12 Agent may be defined as “A natural or artificial entity with sufficient behavioural plasticity to persist in its 
medium by responding to recurrent perturbation within that medium so as to maintain its organisation.”. For a 
complete classification of agents, see: Goldspink [2000]. 
13 “Many natural systems (e.g., brains, immune systems, ecologies, societies) and, increasingly, many artificial 
systems (parallel and distributed computing systems, artificial intelligence systems, artificial neural networks, 
evolutionary programs) are characterized by apparently complex behaviours that emerge as a result of often 
nonlinear spatial-temporal interactions among a large number of component systems at different levels of 
organization.”.  
See: http://www.cs.iastate.edu/~honavar/alife.isu.html  
14 “The word synergetics is composed of Greek words meaning «working together».”, Haken [1982], p. 2. I have 
specified that I am speaking of Haken’s synergetics, to avoid confusion with  the language used by R. 
Buckminster Fuller and E. Applewhite to construct a metaphysical description of the world. 
The integration of geometry and philosophy in a single conceptual system providing a common language and 
accounting for both the physical and metaphysical. 
What distinguishes Fuller’s synergetics from more traditionally metaphysical discussions of the temporal versus 
the eternal, and from most contemporary philosophy, is Fuller's consistent use of geometric concepts to express 
such ancient dichotomies. 
See, for more, Kirby Umer, An Introduction to Synergetics, in: 
http://www.teleport.com/~pdx4d/synhome.html  
15 ”Synergetics is an interdisciplinary field of research. It deals with open systems that are composed of many 
individual parts that interact with each other and that can form spatial, temporal, or functional structures by 
self-organization. The research goal of synergetics is three-fold: (1) Are there general principles of self-
organization? (2) Are there analogies in the behavior of self-organizing systems? (3) Can new devices be 
constructed because of the results in (1) and (2)? From a mathematical point of view, synergetics deals with 
nonlinear partial stochastic differential equations and studies their solutions close to those points where the 
solutions change their behavior qualitatively.” Haken [1997].  
Synergetics is defined as the science of co-operation, and Haken pioneered the scientific analysis of 
hierarchically organized co-operative phenomena in physics, with applications also in biology and the social 
sciences. He was also one of the early workers in chaos theory and self-organization and was one of the first to 
recognize co-operative self-ordering in various kinds of dynamic systems.  
16  See, for example, Serra - Zanarini [1990], Corning [1995]. 
17  «A unit realized through a closed organization of production processes such that (a) the same organization of 
processes is generated through the interaction of their own products (components), and (b) a topological 
boundary emerges as a result of the same constitutive processes.» Zeleny [1981], p. 6. “A machine / system 
which is a member of the class of autonomous systems and which meets the requirement of being organized 
(defined as a unity ) as a network of processes of production, transformation and destruction of components that 
produces the components which: (i) through their interactions and transformations regenerate and realize the 
network of processes (relations) that produced them; and (ii) constitute it as a concrete unity in the space in 
which they exist by specifying the topological domain of its realization as such a network. “ 
See: ENCYCLOPAEDIA AUTOPOIETICA WEB; http://www.enolagaia.com/EA.html#. 
See: Maturana - Varela [1980]; Varela [1979]. 
18 Maturana - Varela [1980], p. 120. The idea of behavioral coupling is related, or derived from that of structural 
coupling. "In general, when two or more plastic dynamic systems interact recursively under conditions in which 
their identities are maintained, the process of structural coupling takes place as a process of reciprocal 
selection of congruent paths of structural changes in the interacting systems which result in the continuous 
selection in them of congruent dynamics of state.", Maturana - Guiloff [1980]. p. 139. “Phrased more 
succinctly, structurally-coupled systems ... will have an interlocked history of structural transformations, 
selecting each other's trajectories.". See: Varela [1979]. pp. 48-49. 
19 For more, see: http://www.enolagaia.com/EA.html#S  
20 The style of cooperation or competition between agents depends on the problem to be solved. The formation 

26 

http://www.cs.iastate.edu/~honavar/alife.isu.html
http://www.inetarena.com/~pdx4d/ocn/outline1.html
http://www.inetarena.com/~pdx4d/synergetica/philopage.html
http://www.teleport.com/~pdx4d/terms.html
http://www.teleport.com/~pdx4d/gst1.html
http://www.teleport.com/~pdx4d/omnihalo.html
http://www.teleport.com/~pdx4d/synhome.html
http://www.enolagaia.com/EA.html
http://www.enolagaia.com/EA.html


                                                                                                                                                        
of teams of agents is the expected approach to the organized division of labor, task-sharing or other methods of 
collective problem solving. See, for further details:  
http://borneo.gmd.de/AS/art/index.html  
21 For more details: http://www.aridolan.com/. With synthesis, the model-creator aims to accurately describe a 
system’s components and plausible interactions, and then use a realization of that description as an empirical 
basis for the study of the system’s global dynamics. The emphasis is put on finding appropriate abstractions for 
describing components and interactions rather than on finding abstractions that are useful for reasoning about 
global dynamics.  
This bottom-up approach is called Agent-Based Modeling (ABM).  
See, for more details: http://www.swarm.org/csss-tutorial/frames.html  
22 “A cellular automaton can be thought of as a stylised universe. Space is represented by a uniform grid, with 
each cell containing a few bits of data; time advances in discrete steps and the laws of the "universe" are 
expressed in, say, a small look-up table, through which at each step each cell computes its new state from that 
of its nearby neighbours. Thus, the system's laws are local and uniform.”. For details, see: 
http://www.brunel.ac.uk/depts/AI/alife/al-ca.htm 
23 From the theoretical point of view, Cellular Automata (CA) were introduced in the late 1940´s by von 
Neumann – A. W. Burks [1966].  
From the more practical point of view it was more or less in the late 1960´s when John Horton Conway 
developed the Game of Life. See, for more: Gardner [1970]; Dewdney [1989]; Dewdney [1990] 
(http://www.csd.uwo.ca/faculty/akd/PERSONAL/hp.html). Toffoli - Margolus [1987] and Ulam [1986], [1991]. 
The basic element of a CA is the cell. A cell is a kind of a memory element and stores – to put it simply - states. 
In the simplest case, each cell can have the binary states 1 or 0. In more complex simulation the cells can have 
more different states. (It is even thinkable, that each cell has more than one property or attribute, and each of 
these properties or attributes can have two or more states.)  
These cells are arranged in a spatial web - a lattice. The simplest one is the one-dimensional "lattice", meaning 
that all cells are arranged in a line like a string of pearls. The most common CA´s are built in one or two 
dimensions.  
Up to now, these cells arranged in a lattice represent a static state. To introduce dynamics into the system it is 
necessary to add rules to define the state of the cells for the next time step. In cellular automata a rule defines the 
state of a cell as a function of the neighbourhood of the cell. 
For more details Schatten [1999]. 
24 A reactive agent is a type of autonomous agent which: 
− can send and receive messages; 
− does not (in general) learn or "think";  
− simply reacts to messages it receives in a stereotyped way (blind behaviour). 
Agents may have: 
− internal data representations (memory or state) 
− means for modifying their internal data representations (perceptions) 
− means for modifying their environment (behaviors). 
25 “The term "Artificial Life" is used to describe research into man-made systems that possess some of the 
essential properties of life. Artificial Life is often described as attempting to understand high-level behavior 
from low-level rules; for example, how the simple rules of Darwinian evolution lead to high-level structure, or 
the way in which the simple interactions between ants and their environment lead to complex trail-following 
behaviour. Understanding this relationship in particular systems promises to provide novel solutions to complex 
real-world problems, such as disease prevention, stock-market prediction, and data-mining on the Internet.”.  
See, for more details: http://alife.org/index.php?page=alife&context=alife and http://alife.santafe.edu/  
26 Sociogenesis is meant as the process by which a single individual, a gravid queen, gives rise to an entire 
society of insects. 
27 “Ants occupy a central place in artificial life due to their relative individual simplicity combined with their 
relatively complex group behaviour.. They do so without being wired together in any specific architectural 
pattern, without central control, and in the presence of strong intrinsic noise. Ants can create architectural 
structures dynamically when and where they are needed, such as trails between nest and food sources, or 
"living bridges" when swarms of ants migrate in the rain-forest.”. Hölldobler – Wilson [1990]. 
28 The swarm program and the swarm software were launched in 1994 by Chris Langton at Sante Fe Institute in 
New Mexico.  
See, for more: http://www.swarm.org/intro.html,  
and: http://mitpress.mit.edu/journal-home.tcl?issn=10645462  
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29 “Floys belong to the flocking Alife creatures variety, sharing with them the social tendency to stick together, 
and the lifelike emergent behaviour which is based on a few simple, local rules. They differ from most other 
Alife flocking (Boids-type) implementations by being territorial animals that defend their territory against 
intruders. They are implemented as Java applets. The more advanced applets allow changing traits and the 
personality of individual Floys (iFloys & eFloys), and also breeding and evolution in the population (eFloys). “. 
For more details, see: http://www.aridolan.com/JavaFloys.html  
30 The name "L-system" is short for "Lindenmayer System", after Lindenmayer [1972], who was one of the first 
people to use syntactic methods to model growth. A simple L-system contains four elements:  
1. VARIABLES are symbols denoting elements that can be replaced.  
2. CONSTANTS are symbols denoting elements that remain fixed.  
e.g. The expression  
<subject> <verb> <predicate> 
consists of grammatical variables. Each variable may be replaced by constants (English words or phrases) to 
produce sentences in English, such as "The cat sat on the mat" or "The dog ate the bone".  
3. RULES ("syntax") define how the variables are to be replaced by constants or other variables. e.g. in the 
above example  
<subject> -  ->   the cat   
would be one such rule.  
4. START words are expressions defining how the system begins. E.g. the above examples from English might 
start from the single variable  
<sentence>.  
For more specifications, see Prusinkiewicz – Lindenmayer [1990], Green [1993] and the site: 
http://www.cpsc.ucalgary.ca/projects/bmv/vmm/title.html  
31 We may also include in the class of recursive systems the fuzzy systems, deriving from the fuzzy sets theory 
introduced by Zadeh (1965). The notion central to fuzzy systems is that truth values (in fuzzy logic) or 
membership values (in fuzzy sets) are indicated by a value in the range [0.0, 1.0], with 0.0 representing absolute 
Falseness and 1.0 representing absolute Truth. The fuzzy logic is summarized in these definitions: 
− Definition 1: Let X be some set of objects, with elements noted as x. Thus, X = {x}.  
− Definition 2: A fuzzy set A in X is characterized by a membership function mA(x) which maps each point in X 
onto the real interval [0.0, 1.0]. As mA(x) approaches 1.0, the "grade of membership" of x in A increases.  
− Definition 3: A is EMPTY if for all x, mA(x) = 0.0.  
− Definition 4: A = B if for all x: mA(x) = mB(x) [or, mA = mB].  
− Definition 5: mA' = 1 - mA.  
− Definition 6: A is CONTAINED in B if mA <= mB.  
− Definition 7: C = A UNION B, where: mC(x) = MAX(mA(x), mB(x)).  
− Definition 8: C = A INTERSECTION B where: mC(x) = MIN(mA(x), mB(x)). 
See: Negoita [1981], Cox [1994]. 
32 “Genetic Algorithms (GAs) were invented by John Holland [1975] and developed by him and his students and 
colleagues. This led to Holland's book "Adaption in Natural and Artificial Systems" published in 1975.  
In 1992 John Koza [1992] used genetic algorithms to evolve programs to perform certain tasks. He called his 
method "genetic programming" (GP). LISP programs were used, because programs in this language can be 
expressed in the form of a "parse tree", which is the object the GA works on. “. See: 
http://cs.felk.cvut.cz/~xobitko/ga/ 
33 For more details: http://www.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html 
John Holland pioneered the application of the process of natural selection to the problem of machine-learning in 
the form of the genetic algorithm (GA), which breeds possible solutions to problems founded on the Darwinian 
theory of natural selection. Based on fitness - that is, how well they solve a given problem - solutions from a 
population are bred together to produce new solutions. Solutions that perform badly die off, and those that 
perform well are bred again to produce even better solutions. “Genetic Algorithms (GA) are based on an 
evolution of random tries by 'individuals', not on logic as regular algorithms. It is a computer simulation of 
Darwin’s theories. Though the whole process is built on randomness, the effect is not. It moves towards the 
'solution'”. See: http://home.online.no/~bergar/mazega.htm 
34 “What makes a system self-organized is that the collective patterns and structures arise without the guidance 
of well-informed leaders, and without any set of predetermined blueprints, recipes or templates to explicitly 
specify the pattern. Instead, structure is an emergent property of the dynamic interactions among components in 
the system.” 
See: http://beelab.cas.psu.edu/research/rC/studiesSO.html 
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“Any system that takes a form that is not imposed from outside (by walls, machines or forces) can be said to be 
self-organized. An excellent overview of this question can be found in Francis Heylighen's paper 'The Science of 
Self-Organization and Adaptivity'.”. See: 
http://pespmc1.vub.ac.be/Papers/EOLSS-Self-Organiz.pdf “. 
See, for more details: http://www.calresco.org/  
Self-organization is  basically a process of evolution where the effect of the environment is minimal, i.e. where 
the development of new, complex structures takes place primarily in and through the system itself. In particular, 
it is immediately clear for the phenomena of accumulation and order. 
For more details: http://pespmc1.vub.ac.be/SELFORG.html 
35 A combinatory system is ordered , or has a form, if the elements are arranged in an orderly way in a vector or 
even a multidimensional matrix (cellular automata). Systems with a form can have an emerging macro 
behaviour for some observers who have specified their point of view. 
36 For simplicity’s sake such variables are not explicitly included in models [A] and [B]. 
37 From model [A], we can write, more completely, the model: 
 

mb(n, t0) ← “CHANCE”    1≤n≤N  [B.1] 
[B] MB(th) = F { MB(th-1), C 1≤n≤N [mb(n, th) },  h = 0, 1, 2, … [B.2] 

mb(n, th+1) = fn{Nn[MB(th)] }   1≤n≤N  [B.3] 
 
The model [B] instead assumes that the macro behaviour is determined as well by the past history of the system. 
Equation [B.2] expresses the macro behaviour at a given instant, in part as a function of the macro behaviour of 
the preceding instant. 
In both cases [A.3] and [B.3] represent the fact that the micro behaviour is independent of the micro behaviours 
from the preceding moments. 
38 “Social learning is the phenomenon by which a given agent (the learning agent) updates its own knowledge 
base (adding to, or removing from it, given information, or modifying an existing representation) by perceiving 
the positive or negative effects of any given event undergone or actively produced by another agent on a state of 
the world which the learning agent has as a goal.”.  See, for more details on social learning by imitation: Conte 
– Paolucci [2001]. See: 
http://www.soc.surrey.ac.uk/JASSS/4/1/3.html  
39 There are various definitions of path dependence. The ingenuous definition is: "Path dependence is a term 
that has come into common use in both economics and law. In all instances that path dependence is asserted, 
the assertion amounts to some version of "history matters". Path dependence can mean just that: Where we are 
today is a result of what has happened in the past. For example, the statement "we saved and invested last year 
and therefore we have assets today" might be more fashionably expressed as, "the capital stock is path 
dependent.”. See: Liebowitz - Margolis [1998].  
The conclusion is “The three types of path dependence make progressively stronger claims. First-degree path 
dependence is a simple assertion of an intertemporal relationship, with no implied error of prediction or claim 
of inefficiency. Second-degree path dependence stipulates that intertemporal effects together with imperfect 
prediction result in actions that are regrettable, though not inefficient. Third-degree path dependence requires 
not only that the intertemporal effects propagate error, but also that the error was avoidable.”. A more 
comprehensive definition concerns the dependence of the path of a system on initial conditions. “Sensitivity to 
initial conditions: when a small change in the initial conditions produces major and unpredictable qualitative 
changes. Traditional approaches implicitly assume that events occur at an average rate (there are exceptions, 
and Robust Planning for example does not make that assumption) and that they can be adjusted if they deviate 
from the desired plan by employing the appropriate adjustment mechanism. But events do not unfold with 
average regularity and adjustments rarely produce the desired effect. No planning mechanism can take all 
initial and influencing conditions into account, and at times a small change in the initial conditions produces 
major and unpredictable qualitative changes. This coupled with positive feedback or increasing returns [Arthur 
1990, 1995], makes accurate forecasting and the planning of specific outcomes extremely difficult.”. See: 
Arthur [1994]. 
40 See: Gleick [1988] 
41 See: Lustick [2000]. 
42 From an exogenous point of view the internal feedback is by definition unobservable (or, in any event, not 
relevant for the description of the system); thus the science of systems, since it views systems from an 
exogenous point of view, cannot but ignore the internal feedback. See: Sandquist [1985], p. 22. 
43 I wish to clearly state that we must not confuse the endogenous or exogenous point of view with the external 
or internal description of a system. 
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In fact the internal, structural, external, or environmental descriptions always involve systems observed from an 
exogenous point of view; the observer that describes the system does not study the nature of the system -- that 
is, the elements and relations that make up the system and define its state and output; "The internal description 
is basically "structural"; that is, it tries to describe the behaviour of the system in terms of state variables and 
their interdependence.  The external description is nevertheless "functional", since it describes the behaviour of 
the system through its interactions with the external environment.". See: von Bertalanffy [1968], p. 149. 
44 The essence of self-organisation is that system structure (at least in part) appears without explicit pressure or 
constraints from outside the system. In other words, the constraints on form are internal to the system and result 
from the interactions between the components, whilst being independent of the physical nature of those 
components. The organisation can evolve either in time or space, can maintain a stable form or can show 
transient phenomena. General resource flows into or out of the system are permitted, but are not critical to the 
concept. 
For more details, see: http://psoup.math.wisc.edu/archive/sosfaq.html 
45 In the complex systems theory the feedback is considered between agents and not as a determining feature of 
the system. “In everyday conversation, we call a system "complex" if it has many components that interact in an 
interesting way. More formally, we consider a phenomenon in the social, life, physical or decision-making 
sciences a complex system if it has a significant number of the following characteristics:  
Agent-based: The basic building blocks are the characteristics and activities of the individual agents in the 
environment under study.  
Heterogeneous: These agents differ in important characteristics.  
Dynamic: These characteristics change over time, as the agents adapt to their environment, learn from their 
experiences, or experience natural selection in the regeneration process. The dynamics that describe how the 
system changes over time are usually nonlinear, sometimes even chaotic. The system is rarely in any long-run 
equilibrium.  
Feedback: These changes are often the result of feedback that the agents receive as a result of their activities.  
Organization: Agents are organized into groups or hierarchies. These organizations are often rather structured, 
and these structures influence how the underlying system evolves over time.  
Emergence: The overlying concerns in these models are the macro-level behaviors that emerge from the 
assumptions about the actions and interactions of the individual agents.”.  
For more details, see: http://pscs.physics.lsa.umich.edu/complexity.html 
46 The micro-macro feedback is often positive, in the sense that it amplifies the initial casual impulse. At other 
times it is negative and tends to order the behaviour of the system as a whole  by pegging the micro behaviour to 
the macro behaviour; or, vice-versa, by eliminating the micro behaviours that are deviant with respect to the 
macro behaviour. 
47 The global "cooperation" of the elements of a dynamic system which spontaneously emerges when an 
attractor state is reached is understood as self-organization. Speaking of an attractor makes sense only in relation 
to its dynamic system; likewise, the attractor landscape defines its corresponding dynamic system.  
For details, see: http://www.c3.lanl.gov/~rocha/ises.html.  
See also: von Foerster [1960]; Haken [1977]; Prigogine [1985]; Kauffman [1993]. 
48 This is the case of populations of insects which act by creating an “aromatic potential field” by spreading 
pheromones or other permanent messages. With their micro behaviours the agents spread pheromone in one site; 
the increasing concentration of pheromone increases the probability that each agent will move in the direction of 
that site. The micro-macro feedback is quite evident. 
This sequence requires a certain number of insects. Only above a critical activation mass of insects can the 
pheromone amplify and become effective, and lead to some accumulation effect. See: Deneubourg – Goss 
[1989]. 
49 Currently it is not yet very well understood how the complexity of (cooperative resp. competitive) group 
behavior is related to individual behavior and how differences in capabilities and problem solution power arise 
and can be grounded. Even basic concepts such as … interaction-complexity, communication, organization, 
minimality etc. are ill- or not uniformly defined: 
− Minimality: concentrate on simple rather than complex agents, study primitive forms of (spatial) behaviors  
− Collectivity: takes in principle the group, not the single agent or robot (or animal), as the unit of research 
analysis and synthesis 
− Locality: try to fulfill global criteria by exploiting local information  
See: di Primio [1999]. 
See also: http://ais.gmd.de/~diprimio/bar/workshops/ws4/plain/BAR-Poster-fdp.html  
50 In Cellular automata there are many possibilities of defining Neighbourhood. We can mention: 
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von Neumann Neighbourhood: four cells, the cell above and below and to the right and left of each cell are 
called the von Neumann neighbourhood of this cell. The radius of this definition is 1, as only the next layer is 
considered.  
Moore Neighbourhood: the Moore neighbourhood is an enlargement of the von Neumann neighbourhood 
containing the diagonal cells too. In this case, the radius r=1 too.  
Extended Moore Neighbourhood: equivalent to the description of the Moore neighbourhood above, but the 
neighbourhood extends beyond the distance of the adjacent cells. Hence r=2 (or larger).  
Margolus Neighbourhood: considers 2x2 the cells of a lattice at the same time. 
51 “It appears to leave human organisations and institutions little different in principle from wasp's nests or 
even piles of sand. They can all be said to emerge from the actions of the individuals. The difference is that 
while we assume that, for instance, wasps have no ability to reason - they just go about their business and in 
doing so construct a nest -  people do have the ability to recognise, reason about and react to human 
institutions, that is, to emergent features. Behaviour which takes into account such emergent features might be 
called `second order emergence”. See: Gilbert [1995]. 
52 Except in the case when the micro behaviours are directed by a "director". 
53 We must thus remember that in order to produce the micro behaviours (and observe the macro behaviour) we 
must usually supply energy to the system. Since the main objective of the theory of combinatory systems is to 
bring out the operative logic typical of such systems, in order to simplify its description energy inputs are 
usually not considered, in part because such considerations are usually superfluous, if not impossible. In order to 
give a technical explanation of the action of such systems, in particular for purposes of designing them, the 
knowledge of the energy inputs can be indispensable. 
54 We have used, though with a different meaning, the same terminology used by Monod [1971], who, in his 
famous Chance and Necessity, examined a very powerful combinatory system: that leading to a dynamic 
evolution in a population due to random mutations produced in the DNA that "by necessity" spread as a result of 
the invariant reproductive mechanism of cells. The author considered "chance" only as the source of the changes 
in genotype information, and "necessity" only in terms of the reproductive mechanics of the phenotype as 
caused by the genotype. However, he didn't point out the other features of the combinatory system that describes 
evolution, and in particular didn't consider the micro-macro feedback action for the spread of new features.  Nor 
did he mention the need for a minimum activation density and, what is more important, didn't include among the 
necessitating factors the reproductive instinct, and among the recombining factors exogenous teleonomy. 
Monod writes: "A mutation represents in itself a microscopic, quantum event, to which, as a result, we apply the 
principle of indetermination: an event which thus is unpredictable by nature." (p. 97). "These alterations are 
accidental; they occur by chance. And since they represent the sole possible source of changes in the genetic 
text, which in turn is the sole depository of the organism's hereditary structure, it necessarily follows that 
chance alone is behind every novelty, every creation in the biosphere. Pure chance, chance alone, absolute but 
blind freedom, is at the root of the prodigious evolutionary structure: today this central idea of Biology is no 
longer an hypothesis among the many possible or conceivable hypotheses, but is the only conceivable one, since 
it is the only one that is compatible with the reality our observation and experence reveal to us." (pp. 95-96). 
Haken also speaks of chance and necessity when he proposes constructing models of complex systems. Here 
Haken considers chance as the unpredictable fluctuation from an unstable equilibrium state, and necessity as the 
movement towards a new, more stable state. Haken [1983]. In this regard, see aso Prigogine-Stengers [1993].  
55 The macro behaviour of many combinatory systems is also characterized by a direction. When the macro 
behaviour can develop with a direction or in opposite directions, toward one general state rather than another, 
then this behaviour can be determined by random fluctuations in the initial micro behaviours from one to the 
other state. 
"Chance" will not only set under way the macro behaviour but will also determine the direction, that is the 
direction of the "winning" fluctuation. Prigogine bases his theory on the emergence of order in complex systems 
on the consequences of fluctuations.  C.f. Nicolis-Prigogine [1981], passim, in particular section 6 of chapter 6.  
See also Haken [1983]. 
A simple way to observe the inflow of the random fluctuations in orientating the direction of the "macro" 
dynamics of combinatory systems - even if it is not sufficient to describe the effect of chance on the overall 
dynamics of a combinatory system - is offered by the so-called Polya Urns. 
The Polya urns : a random elementary process consisting of the random extraction of balls from an urn and the 
doubling of the extracted ball. A variant of this model is the Ehrenfest Urns in which the overall number of balls 
remains constant but, upon extracting a ball of a certain colour, say "b", we eliminate a ball of another colour. In 
this case, each random shift in the number of balls influences the probabilities of the succeeding extractions. 
56 Deneubourg - Goss [1989]" show that the task organization in a colony (of bees and/or ants) appears to be a 
distributed function which does not require a central organizer. 
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57 Organization is a typical characteristic of operative systems, but it can also be observed in many natural 
biological combinatory systems in which the individual elements - for example, cells - can  
take on different states. Each cell specializes in its own function by taking on the appropriate state in relation to 
the position it occupies in the system. The form once again appears to guide the system toward a given 
evolution according to the micro rules contained in the genetic code. 
58 The characteristic of ramification appears in combinatory systems, typically of the diffusion variety, that have 
a temporal dynamics during which part of the base is transformed into another combinatory system that can 
subsequently expand, and whose elements have certain features in common with the other system and others 
that are different. 
We can thus imagine that a new branch takes off from the original system that in time can be reabsorbed or 
independently maintained. In the latter case other ramifications can subsequently occur. 
There are many systems which permit ramifications: the history of evolution testifies to the progressive 
ramification of the combinatory system which, beginning with the primordial organisms, has produced the 
variety of all living species. On the description of the branchings of the living, see for example Maturana-Varela 
[1987]; the authors refer to branching with the meaningful term genetic drift. Monod [1971] considers the 
combinatory system of evolution and justifies the branchings in terms of random mutations in the genotype and 
of uniform replications of the new genotype;  the resulting phenotype change is spread if it has advantages for 
life; otherwise it tends to disappear.  
59 With the expansion effect, the micro and macro rules that initially operated on a limited base of N elements 
are extended to an open set of elements.  

32 


