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Abstract 
My paper deals with a particular view of synergetics applied to social phenomena 

produced by collectivities, and aims to demonstrate that collectivities of non-
interconnected similar agents which develop analogous micro behaviours can also show 
very interesting forms of self-organization that lead to ordered or chaotic macro 
behaviour. 

I have called these collectivities combinatory systems since, on the one hand, the 
macro behaviour of the system as a whole derives from the combination of the 
analogous micro behaviours or effects of the agents and, on the other, the macro 
behaviour determines, conditions, or directs the subsequent micro behaviours. This 
internal micro-macro feedback produces a self-organization effect as if an Invisible 
Hand or Internal Organizer regulated its time path and produced the observable effects 
and patterns. 

Combinatory systems are not easily recognizable; nevertheless they are widely 
diffused and produce most of the social and economic collective phenomena involving 
the accumulation of objects, the spread of features or information, the pursuit of a limit, 
and the achievement of general progress as the consequence of the individul pursuit of 
particular interests. 

My second aim is to illustrate � with the aid of simple combinatory automata � 
phenomena as intriguing as they are emblematic: the voice-noise effect in organizations; 
the clustering and swarming effects in economics; the unjustified raising of retail prices; 
the stock exchange dynamics deriving from the micro-macro feedback between 
stockbroker decisions and the stock index. We will see that the joint action of crossed 
and multi-level micro-macro feedback makes it not unthinkable that �a butterfly can 
cause the collapse of the stock exchange�. 

 

Keywords: behaviour of collectivities; combinatory systems; combinatory automaton; synergetic; 
social dynamics. 
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1 � Collectivities 

Definition 1 – I define a collectivity as a plurality of similar elements or agents which are 
unorganized – that is, not specialized according to function, functionality, functioning and topology 
– and produce an analogous micro behaviour over time – or similar micro effects – but, considered 
together, are capable of developing a macro behaviour– and/or macro effects – which is attributed 
to the collectivity as a whole1. 

Collectivities can be observable (for example, swarms, flocks, crowds, spectators at a stadium, 
students in a classroom, persons that are talking in a crowded room, dancers doing the Can Can), or 
simply imaginable (for example, trailer-trucks traveling a stretch of highway in a month, the noble 
families of Pavia who erected the 100 towers in the span of two centuries, a group of scientists who 
dedicate themselves to a branch of research, the consumers of a particular product during its entire 
life-cycle, stockbrokers working on a certain day in world or Eurpean stock markets). 

Collectivities can be composed of persons (social collectivities or populations), animals active 
biological organisms (herds, schools, swarms, etc.), or reactive ones (plants, micro-organisms), 
even other inanimate objects; in any case, if considered from a certain distance collectivities appear 
distinct with respect to the individuals they are composed of, and thus seem able to show an 
autonomous macro behaviour due to the joint action of the micro behaviours of the agents. 

The behaviour of the collectivity can be defined as local � or based on limited information � or 
global � or based on complete information � depending on whether or not the macro behaviour 
derives from local information possessed by the agents (a person acquires a good because he 
observes that at least N friends have bought it; an elephant in a herd runs to the left because the 
elephants on its right push it in this direction) or from global information (over time and/or space) 
possessed by all the agents (all the students rise because the teacher orders them to; all the animals 
flee because they see the fire advancing)2. 

Global information plays an essential role in many relevant phenomena produced by social 
collectivities. 

Global information may derive from outside (external director, starting traffic lights or the 
starting gun in races, trumpeting by the leader of the herd, and so on) or may be self-produced by 
the joint micro behaviours of the agents considered as a whole. 

I define social collectivities acting on the basis of self-produced information as Combinatory 
Systems. 

I observe that if, on the one hand, it is easy to explain (perhaps properly speaking, to describe), 
assuming only local information and rules, the behaviour of a flock of birds, a school of fish, or a 
herd of elephants when these collectivities have already formed, or the spread of information, the 
imitation of choices (information contagion), or the percolation effects in probabilistic diffusion 

                                                           
1 A collectivity of organized agents forms an organization, that is a social system (a social machine according to 
Maturana and Varela, 1980) where the collective and individual behaviour is determined by a network of stable 
relations (that is, the organization). 
2 In Agent-Based Models collectivities are normally interpreted as Complex (Adaptive) Systems (Coveney and 
Highfield, 1995; Mitleton and Kelly, 1997; Allen, 1997; Axelrod, 1997; Goldspink, 2000), defined as a plurality 
(usually large) of blind (reactive) or intelligent (active) multi-character (Drogoul and Ferber, 1994), specialized, usually 
(strongly) interconnected (Wu, 1997; Granovetter, 1974; Grimmett, 1999) interacting agents (or processes) (Holland, 
1995; Gell-Mann, 1995-96; Stacey, 1995), often showing possible multi-level hierarchies (Chan, 1998; Gaffeo, 1999; 
Cummings and Staw, 1985: 2) whose collective macro behaviour is determined by the interaction of the micro 
behaviours of the agents (Otter, Veen and Vriend, 2001) on the basis of simple local rules (Waldrop, 1993) according to 
a schema (innate or learned) (di Primio, 1999), and which shows non-linear dynamics as well as unanticipated global 
properties, or patterns (Foster and Metcalfe, 2001: 4). 



systems (Frey and Decker, 1996; Grimmet, 1999), on the other hand it is not so easy to apply this 
micro approach to describe, for example, the grouping of flocks (a bird is attracted by the flock and 
not by its neighbours), swarms, herds and other collectivities, the formation of graffiti on walls 
(people are attracted by the cloud of graffiti and not by the behaviour of other people), the breaking 
out of applause (many people applaud if the applause dies down), or the phenomenon of a rising 
murmur in a crowded room.  

It is clear that a person who is talking raises his voice to go beyond the increasing murmur of 
the crowded room only for individual necessity, and not because his neighbours are raising their 
voices, or that a fish joins a school of fish because of the presence of a predator, and only if he can 
perceive the school, and not because he sees other fish join the school. 

Similarly, it is hard to explain, by exclusively using local rules, the exceeding of limits (all 
people park or drive fast even in the presence of parking limits and speed limits), the pursuit of 
records, the eternal maintenance of feuds, and the phenomenon of urban settlements. 

The analysis and understanding of these and many other phenomena, which will be mentioned 
below, is even more difficult because they often are "one way" and cannot be repeated or 
reproduced, as if due to chance.  

While the phenomenon of urban settlements appears to repeat itself many times, even with 
particular variations, the same cannot be said for the construction of towers in medieval Pavia, 
which is an amazing event because it is unique.  

In many cases, moreover, Agents cannot observe the collectivity, and thus their neighbours, and 
must act only based on individual necessities, as in the case of the formation of piles of garbage (if I 
need to throw away a piece of garbage and I see a garbage pile, I prefer to leave my garbage 
behind), of annoying and dangerous wheel ruts on the highway (passing trucks need to maintain 
their trajectory on the carriageways, and this is reinforced by these micro behaviours), or of paths in 
fields (people prefer to cross a field where a path is visible), and so on. 

In all these circumstances, the Agents� micro behaviours seem to follow some necessitating 
global self produced information represented (or derived) by some macro variable(s) deriving from 
the collectivity (the cloud of graffiti, the pile of garbage, the applause, the carriageway, the feud, 
and so on) rather than obey a set of local rules or information2. 

                                                           
2 The Complex Adaptive Systems approach, in particular (Allen 1997), studies how collectivities interact and exchange 
information with their environment to maintain their internal processes over time through adaptation, self preservation, 
evolution and cognition (in the sense of Maturana and Varela 1980: 13), and to achieve collective decisions (Rao and 
Georgeff 1992: 127-146, Wooldridge and Jennings 1994) within a relational context of micro behaviours (Conte and 
Castelfranchi 1992).  
The analysis of complex systems implies a Recursive Approach, and two of the most powerful tools are represented by 
the Cellular Automata Theory � introduced in the late 1940s by John von Neumann (Burks 1966), which allows the 
researcher to explore complex systems by simulating Artificial Life (Alife) (Liekens 2000) � and the Genetic 
Algorithms approach (Bak 1994, 1996). 
The theory of Cellular Automata builds mathematical models of a system whose agents are represented by cells in an 
array (a lattice) of one or more dimensions (Creutz 1996, Schatten 1999). It is important to note that the rules that define 
the micro behaviour of a cell are only local rules, in the sense that the state of the cell depends only on one of a 
specified number of neighbours and not on the state of the array (Gardner 1970, Toffoli and Margolus 1987, Dewdney 
1989, 1990, Ulam 1986, 1991). 
Following the logic of cellular automata, many fundamental instruments have been created to simulate Artifical 
Societies (Resnick 1994, Epstein and Axtell 1996, http://zooland.alife.org). Among the most well-known are Dorigo�s 
Ants approach (Dorigo, Di Caro and Gambardella 1999, Hölldobler and Wilson 1990), Langton�s Swarm approach 
(http://www.swarm.org), Reynolds�s boids (Reynolds 1987), and Dolan�s Floys approach (Dolan 1998).  
These instruments also demonstrate that there is also a hidden order in the behaviour of collectivities of simple living 
autonomous reactive agents. 
As Holland attempts to demonstrate, the most powerful approach to understanding and showing the hidden order in 
collective behaviour is the genetic algorithms approach (Holland 1975) and the related genetic programming approach 
of Koza (Goldberg 1989, Koza 1992).  
 

http://zooland.alife.org/
http://www.swarm.org/intro.html


2 � Combinatory Automaton 

Definition 2 � I define as (mono-dimensional) Combinatory Automaton a particular automaton 
whose macro dynamics is regulated by a combination (to be specified) of the micro dynamics of its 
cells, according to the following specifications (Fig. 1):  

1) let there be a set of N cells Ai, 1≤i≤N, arranged in a combinatory lattice Λ; each cell 
represents an agent; 

2) all the agents are characterized by the variables ai � which are similar because they are 
defined in the same domain (or repertoire) di = d ⊂ R � whose values represent the state ai(th) at 
time th∈T (we assume T is a discrete time scale); 

3) the analytical state of the automaton, Λ(th) = [ai(th)], is defined as the values ai(th)∈di 

assumed by Ai for each th∈T;  

4) in many cases a set of functions fi transforms each ai(th) into a different variable ei(th) = fi 
[ai(th)] that may represent the output micro effect produced by agent Ai, 1≤i≤N; in most cases, we 
may assume ei(th) = ai(th); the time series Ai(T) = [ei(t0), ei(t1), ei(t2), . . ] represents the micro 
behaviour of the agent Ai over a period T; 

5) the synthetic state of the automaton at th is defined as the value assumed by a global macro 
variable Χ(Λ, th) ={C1≤i≤N ai(th)} = C[Λ(th)] derived from a combination of those values, where 
C1≤i≤N indicates a set of combination operation(s), appropriately specified (sum, product, average, 
min, max, etc.), of values associated with Λ(th);  

6) the output macro effect of the automaton at th is defined as the value assumed by the 
variable, E(Λ, th) = F {Χ(Λ, th)} = F {C[Λ(th)]}; the recombining function F (or macro rule)  
transforms the synthetic state into the output of the automaton; the time series E(Λ, T) = [E(Λ, t0), 
E(Λ, t1), E(Λ, t2) . . . ] represents the macro behaviour of the automaton in period T; in many 
simple cases, E(Λ, th) = Χ(Λ, th) = C[Λ(th)];  

7) at time th+1 each Ai changes its value following the micro transition function: ai(th+1) = Νi 

[ai(th), Χ(Λ, th)], where Νi represents the necessitating function, that is a set of necessitating 
operation(s), appropriately specified (difference or variation), which modifies the previous values 
ai(th) following the output variable, Χ(Λ, th); in many simple cases, ai(th+1) = ai + ki [ai(th) - Χ(Λ, 
th)] (Melay automata) or ai(th+1) = Ki [Χ(Λ, th)] (Moore automata) where ki and Ki represent 
appropriate scalars; the transition of state is characterized by a length, ∆ti, and may follow a 
probability, pi (par. 3); 

8) for the recursive dynamics being produced, we must also assume that the initial state Λ(t0) is 
specified;  

9) as a result, a general micro-macro feedback relation connects the micro state to the macro 
state through the variable E(Λ, th), which may be thought of as an organizing or driving variable of 
the corresponding combinatory system, since it determines the subsequent micro behaviour of the 
agent Ai; 

10) the set of rules specifying the initial state Λ(t0), the operations C1≤i≤N and Νi, the rules F and 
fi, and the probabilities pi, represent the operative programme, which produces the dynamics of the 
combinatory automaton. 

The definition is summarized in the following formal model (Fig. 1): 

 



Λ(t0) = [ai(t0)] ← CHANCE/PROGRAMME 1≤i≤N Initial analytical state [A.1] 

Χ(Λ, th) = C1≤i≤N [ai(th)] = C [Λ(th)]  h=0, 1, 2, 
� 

Synthetic state [A.2] 

E(Λ, th) = F { Χ(Λ, th) }  Output macro behaviour  [A.3] 
ai(th+1)= Νi [ai(th), pi, ∆ti, E(Λ, th)]  Analytical state  [A.4] 

 
[A] 

 
              

ei(th+1)= fi {Νi[ai(th), pi, ∆ti, Χ(Λ, th)} 1≤i≤N 
Output micro behaviours [A.5] 

  Set: { C1≤i≤N, Νi, pi, ∆ti, F and fi }  Operative programme  [A.6] 

3 � Typology of Combinatory Automata 

Considering the modus operandi of the combinatory automaton, it is useful to point out that a 
combinatory automaton may be: 

- stochastic, if a probability pi is associated with the transition of state of each Ai, 1≤i≤N; in 
the opposite case it is deterministic ; probabilities may be: fixed if pi ≡ p for every i and j; time 
dependent if pi ≡ p(th); time and agent dependent if pi ≡ pi(th); output dependent if pi ≡ pi(Χ, 
th);  

- time-response sensitive, if the length of the period of transition of state ∆ti = ti+1 - ti is agent-
output dependent; ∆ti ≡ ∆ti(Χ, th);  

- two-dimensional, if Agents are arranged in R rows and C columns, so that N = (R*C), or 
multi-dimensional (in the model I have considered a mono-dimensional automaton); 

- mono or multiple-driven, depending on the number of driving variables Ej(Λ, th) (in the 
model I have considered a mono-driven automaton and j=1 is omitted); 

- reversible, if ai(th) = ai(tk), h≠k, is admitted (in the model I have not explicitly considered 
reversibility, as this will be developed in the next section); 

- casual or causal, if, respectively, the initial state, Λ(t0), is produced by chance or is 
attributable to a specific activation programme of an external will. 

In stochastic combinatory automata, when both probabilities pi ≡ pi(Χ, th) and periods of 
transition of state ∆ti ≡ ti(Χ, th) are agent/time/state sensitive, the micro behaviours are conditioned 
by the macro behaviour of the entire system, which makes the micro-macro feedback evident. 

Probabilities can act in two ways:  

- as stop-or-go probabilities, in the sense that if the probabilistic event occurs, the agent 
assumes a new state; otherwise, it maintains its actual state. We might symbolize this type of 
probability by writing: pi(Χ, th)[0,1]. �0� means that if the event does not occur, the agent 
maintains its state; �1� that the agent changes its state if the event occurs; 

- as transition probabilities, in the sense that if the probabilistic event occurs, then the agent 
enters a new state; if the event does not occur, the agent assumes a different state or returns to 
the past one. We can write: pi(Χ, th)[-1,1].  

With regard to the nature of the combination operation carried out, we can define a 
combinatory automaton as: 

- medial combinatory automaton, if its synthetic state and output at th are defined as a function 
of the mean (to be specified) of the values assumed by the micro variables, for example: Χ(Λ, 
th) = ∑1≤i≤N ai(th); the subsequent micro transition function may be based on the deviation from 



the mean value or be a function of the mean value; in the simplest case, for example: ai(th+1)= Νi 

[ai(th) - Χ(Λ, th)] = Νi [∆ai(th)], for any cell Ai, 1≤i≤N; 

- maximal combinatory automaton, if its synthetic state and output at th are defined as a function 
of the maximum value in the analytical state; for example: Χ(Λ, th) = Maxi ai(th) = aM(th); 
consequently, ∆ai(th) = ai(th) - aM(th) represents the quantum of inferiority perceived by each 
Ai, 1≤i≤N compared with the state of aM(th) which can be interpreted as the leader cell (or �the 
best�);  

minimal combinatory automaton, if Χ(Λ, th) is a function of the minimum value in the analytical 
state; in the simplest case, for example: Χ(Λ, th) = Mini ai(th) = am(th); in this case, ∆ai(th) = ai(th) - 
aM(th) represents the quantum of superiority perceived by each Ai, 1≤i≤N compared with the state 
of am(th), which can be interpreted as the base cell (or �the worst�). 
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Figure 1 – The operative logic of a combinatory automaton 

4 � Combinatory Systems 

Definition 3 (operational) - I define as a combinatory system any collectivity whose behaviour may 
be simulated by a combinatory automaton.  

This definition is quite simple but focuses on the operative logic of any combinatory system: 
each cell corresponds to an Agent; the lattice corresponds to the Combinatory system as a whole; on 
the one hand, the macro behaviour of the System, as a whole, derives from the combination 
(defined in an opportune way) of the analogous micro behaviours of its similar agents (hence the 
name Combinatory System) but, on the other hand, the subsequent micro behaviours derive, in 
some way (are determined, or conditioned, or directed) by the macro behaviour of the system. 

Combinatory systems are thus characterized by a micro-macro feedback between the micro and 
macro behaviours. 

We can suppose that a necessary and sufficient condition for a collectivity (observable or 
supposable) to be considered a combinatory system is the existence of a feedback between the 
micro behaviour of the individuals and the macro behaviour of the collectivity constituting the 



system.  
The feedback arises from necessitating factors, which force the agents to adapt their micro 

behaviour to the system's macro behaviour, and is maintained by the action of recombining factors, 
which lead the collectivity to recombine the micro behaviours, or the micro effects, in order to 
produce and maintain the macro behaviour, or the macro effect.  

Recognizing the existence of a micro-macro feedback and understanding the nature of both the 
necessitating factors and the recombining ones is indispensable for interpreting collective 
phenomena as deriving from a combinatory system3. 

In this sense path dependence (Arthur 1988, Liebowitz and Margolis 1998) is proof of the 
action of the micro-macro feedback, even if path dependence theory does not explicitly include this 
mechanism in the explanation of the path dependence. 
Definition 4 (cognitive) - I define as a combinatory system any collectivity whose agents, 
consciously or unconsciously, act (exclusively or prevalently) on the basis of global information 
which they direcly produce and update as the consequence of their micro behaviours. On the one 
hand, the global information is - or derive from – a synthetic variable whose values derive from the 
combination of the micro states of the agents but, on the other, these values affect the subsequent 
states as a result of a micro macro feedback, acting over a period, that produces self-organization 
in the agents’ micro behaviours (Fig. 2). 
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Figure 2 - The cognitive logic of a combinatory system 

 
This definition emphasizes the cognitive activity of the agents: the macro effects produced by 

the macro behaviour of the system in themselves do not necessarily lead to self-organization; they 
become factors in self-organization only when these effects are interpreted by the agents as 
information they can base their decisions on. 

Examples: if an immigrant (or a new entrepreneur) looks at an urban (industrial) settlement 
(macro effect) he may argue that the settlement offers better conditions of life (of business) than 
elsewere (global information derived from the macro effect: the impetus belli, the applause (see 
below), the accumulation of pheronomes, are macro effects (moving into attack, clapping, ant 
colony columns) that can be interpreted as global information for other agents (the attack has begun 
and I must follow, the performance is finishing and I must appreciate it, the path is reliable and I 
can follow it). 

                                                           
3 In order to provide a technical explanation of the action of such systems, and above all for the purpose of planning 
them, knowledge of the energy inputs can turn out to be indispensable. 



Since by definition the agents are similar and have similar behaviour, it follows that we can 
assume that the same information produces similar decisions regarding the change in state of the 
agents, who thus appear to conform or even synchronize their micro behaviours.  

The typical example of evident synchronization is that of applause. How many times have we 
experienced this! 

A certain number of persons attend an event. Suddenly someone � by chance or directed by 
someone � claps (micro behaviour), thereby producing a typical sound (micro effect). If the number 
of those that begin to clap does not reach the minimum activation number, then the applause does 
not begin. But if the initial clapping does not die down, others will join in and there is thundering 
applause. The micro behaviours translate into a macro behaviour (everyone applauding), of which 
the applause, understood as a typical sound, represents the macro effect and the global information 
according to which the subsequent micro behaviours are synchronized. 

The individual spectators produce the applause by clapping their hands, but this obliges 
everyone by necessity to continue to clap their hands in order to sustain the applause itself until 
someone stops applauding and the macro effect fades away. The feedback inevitably acts in the 
opposite direction, and the applause slowly dies out. 

Combining the two previous definitions, if we accept the traditional notion of self-organization 
as the macro behaviour of a collectivity of agents in which the micro behaviours appear to be 
directed, or organized, by an Invisible Hand, or Supreme Authority, or Benevolent Deity in order to 
produce the emerging phenomenon represented by the formation of ordered structures, of 
recognizable patterns (Foster and Metcalfe 2001: 130, Pelikan 2001), then all the above-mentioned 
collective phenomena can also be defined as self-organization or spontaneous order (Sugden 1989, 
Kauffman 1993, Ashford 1999, Swenson 2000)3. 

There is nothing strange here: the invisible hand is nothing other than the synergetic effect of 
the micro-macro feedback action (or circular causality) that generates and updates the global 
information that produces self-organization and emerging macro behaviours attributable to the 
collectivity4. 

The micro-macro feedback may be thought of as a internal dynamic director or, better yet, as an 
internal dynamic organizer which produces and uses the global information as an order 
parameter!4and, following the slaving principle, directs or organizes the individual behaviours and 

                                                           
3 Adam Smith�s invisible hand naturally comes to mind. Adam Smith used the term "invisible hand" only once in his 
Wealth of Nations (1776) in the following quotation: "...[B]y directing that industry in such a manner as its produce 
may be of the greatest value, he intends only his own gain, and he is in this, as in many other cases, led by an invisible 
hand to promote an end which was no part of his intention. Nor is it always the worse for the society that it was not part 
of it." 
The invisible hand was also mentioned by Haken, the founder of Synergetics: �We find that the various parts are 
arranged as if guided by an invisible hand and, on the other hand, it is the individual systems themselves that in turn 
create this invisible hand by means of the coordinated effect. We shall call this invisible hand that gives order to 
everything the «organizer� (Haken, 1977). 
4 This is the case of populations of insects, typically ants, which act by creating an �aromatic potential field� by 
spreading pheromones or other permanent messages. With their micro behaviours the agents spread pheromone across 
one site (micro information); the increasing concentration of pheromone (global or macro information) increases the 
probability that each agent will move in the direction of that site. The micro-macro feedback is quite evident (Zollo, 
Iandoli and De Maio 2001). This behaviour is the consequence of stigmercy, which derives from the ability of ants to 
communicate by means of small signals able to trigger a chain reaction (Grassé 1959). 
This sequence requires a certain number of insects. Only above a critical activation mass of insects can the pheromone 
amplify and become effective, and lead to some accumulation effect (Deneubourg and Goss 1989). 
4 When an ordering parameter guides system components or subsystems, this is said to slave the subsystems, and this 
slaving principle is the key to understanding self-organizing systems. The global information produced by a 
combinatory system may be considered an ordering parameter that slaves all the agents of the system and forces them to 
self-organize and produce collective phenomena. 
�In general just a few collective modes become unstable and serve as “ordering parameters” which describe the 
macroscopic pattern. At the same time the macroscopic variables, i.e., the order parameters, govern the behavior of the 



produces the self-organization of the system and hence the collective phenomena (von Foerster 
1960, Haken 1977, Prigogine 1985, Kauffman 1993, Martelli 1999)5.  

5 � Social Combinatory Systems 

The most interesting combinatory systems are the social ones, which are made up of men or 
organizations.  

On the basis of the considerations in the previous sections, we can define social combinatory 
systems by the following definition, which nevertheless can also be applied to more general cases. 

Definition 5 (functional) - I define as a (social) combinatory system any collectivity showing the 
following functioning rules (Fig. 3): 

− all agents are similar in the sense they show a relatively similar nature, structure or significance; 

− these are not necessarily interconnected by evident interactions, or by network, web or tree 
structures; 

− all the agents are characterized by the same individual variable (or set of variables) of some 
kind (qualitative or quantitative) whose values � at any time th � represent the individual states 
whose dynamics, over a period T, may be defined as micro behaviours of the agent � which 
may lead to analogous micro effects; 

− the collectivity is characterized by a macro (global) variable (qualitative or quantitative) whose 
values � at any time th � represent the system states whose dynamics over a period T may be 
defined as a macro behaviour (which may lead to a macro effect of some kind) attributable to 
the collectivity as a whole;  

− the system state � at any time th � derives from the combination (to be specified) of the 
individual states, following macro or recombining rules, and may be conceived � or interpreted 
� as a global information for the agents; in many cases the global information corresponds to 
the macro behaviour or the macro effect of the collectivity as a whole; 

− each agent � at time th+1 � through the global information, can perceive and evaluate � in a 
simple pay-off table � positive or negative gaps (advantages or disadvantages) between his 
individual state and the state of the collectivity; following the micro or necessitating rules each 
agent makes individual micro decisions (by a process of imitation and social learning) in order 
to increase (if positive) or reduce (if negative) the perceived gaps; 

− but these decisions recursively change the value assumed by the macro variable, and this 
modifies the perceived positive or negative gaps, driving the agents to adapt their behaviour by 
new decisions. 

                                                                                                                                                                                                 
microscopic parts by the “slaving principle. In this way, the occurrence of order parameters and their ability to enslave 
allows the system to find its own structure”.  (Haken, 1988: 13). 
The micro-macro feedback is the expression of the circular causality which emerges when the subsystems collectively 
determine the order parameters and the order parameters determine the behavior of the subsystems. 
5 ”In general just a few collective modes become unstable and serve as “ordering parameters” which describe the 
macroscopic pattern. At the same time the macroscopic variables, i.e., the order parameters, govern the behavior of the 
microscopic parts by the “slaving principle. In this way, the occurrence of order parameters and their ability to enslave 
allows the system to find its own structure.". (Haken, 1988: 13) “In general, the behavior of the total system is governed 
by only a few order parameters that prescribe the newly evolving order of the system” (Haken (1987: 425). 



Figure 3 - The main elements of a combinatory system 
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The operative logic of combinatory systems is as basic as their structure: 

- on the one hand the micro behaviours seem self-organized to produce the macro behaviour of 
the system which, for an observer, may be conceived as an emergent phenomenon; 

- on the other hand, the macro behaviour updates the global information and determines, 
conditions, directs, or drives the subsequent micro behaviours in a typical micro-macro 
feedback; this, for an observer, may be conceived as a self-organization effect; 

- the micro-macro feedback operates between the limits of the minimum activation number and 
the maximum saturation number of the agents presenting the state that maintains the micro-
macro feedback; this guarantees over time both the production of the emergent phenomenon and 
the maintenance of the self-organization effect. 

6 � Typology of Combinatory Systems 

The logic proposed in the previous sections can be observed in five relevant classes of combinatory 
systems which differ with regard to their macro behaviour (or their macro effect): 

1. Systems of accumulation, whose macro behaviour leads to a macro effect which is 
perceived as the accumulation or the clustering of �objects�, behaviours, or effects of some kind; 
this logic applies to quite a diverse range of phenomena, among which the formation of urban or 
industrial settlements of the same kind and of industrial districts, the grouping of stores of the same 
type in the same street, the accumulation of garbage, graffiti, writings on walls; but it can also be 
applied to phenomena such as the breaking out of applause, the formation and the maintenance of 
colonies, forests, herds and schools.  

2. Systems of diffusion, whose macro effect is the diffusion of a trait or particularity, or of a 
�behaviour� or "state", from a limited number to a higher number of agents of the system; systems 
of diffusion explain quite a diverse range of phenomena: from the spread of a fashion to that of 
epidemics and drugs; from the appearance of monuments of the same type in the same place (the 
towers of Pavia, for example) to the spread and maintenance of a mother tongue, or of customs.  



3. Systems of pursuit produce a behaviour that consists in a gradual shifting of the system 
toward an �objective�, as if the system, as a single entity, were pursuing a goal or trying to move 
toward increasingly more advanced states; this model can represent a lot of different combinatory 
systems: from the pursuit of records of all kinds to the formation of a buzzing in crowded locales; 
from the start of feuds and tribal wars in all ages to the overcoming of various types of limits.  

4. Systems of order, produce a macro behaviour, or a macro effect, perceived as the attainment 
and maintenance of an ordered arrangement among the agents that form the system; systems of 
order can be used to interpret a large number of phenomena: from the spontaneous formation of 
ordered dynamics (for an observer) in crowded places (dance halls, pools, city streets, etc.) to that 
of groups that proceed in a united manner (herds in flight, flocks of birds, crowds, etc.); from the 
creation of paths in fields, of wheel-ruts on paved roads, of successions of holes in unpaved roads, 
to the ordered, and often artificial, arrangement of individuals (stadium wave, Can-Can dancers, 
Macedonian phalanx). 

5. Systems of improvement and progress, whose effect is to produce progress, understood as 
an improvement in the overall state of a collectivity that is attained through individual 
improvement. This can be considered a subclass of the Systems of Pursuit. Individual 
improvements raise the parameter that measures collective progress; this leads to the formation of 
positive and negative gaps that push the individuals to improve in order to increase the gaps (if 
positive) or eliminate them (if negative). The system must be able to perceive the individual 
improvement and to adjust the progress parameter to the average (or, more generally, to the 
combination) of the individual improvement measures.  

7 � Probabilistic social combinatory systems 

The social combinatory systems that are most interesting and easiest to represent are the irreversible 
ones (build a tower or not, teach Italian or English to babies). In these systems both the micro and 
macro behaviours produce permanent effects that may be viewed as increasing or decreasing 
cumulative processes in which the probabilities are: pi(Χ, th)[0,1]. 

Chaos arises in combinatory systems when the hypothesis of reversibility is introduced (for 
example: to speak or to keep quiet in the next minute, wear a skirt or miniskirt on different days, 
choose road A or B on different days) (Fuchs and Haken 1989). These systems are generally 
governed by transition probabilities: pi(Χ, th)[-1,1]. 

When reversibility in micro behaviours or in micro effects is possible, the combinatory system�s 
macro behaviour, or macro effect, can show a cyclical dynamic and, under certain conditions 
concerning the probability function regarding the transition of state of the elements, a chaotic one as 
well, when no cycles are recognizable in the time series of the system starting from random initial 
values (Gleick 1988). Examples of reversible systems are those of diffusion and dissemination 
(fashion and contagion), whose elements may at different times present the same state chosen from 
a repertoire (Lustick 2000).  

In particular we can note that in probabilistic reversible combinatory systems both the random 
initial states of the system and the probability function for the transition of states, which depend on 
the macro behaviour at each iteration, can be determined with ample approximation. 

These hypotheses of randomness in the initial conditions and in their evolution as well (history 
dependence), together with the imprecision of the measurement of the micro behaviours, produce 
dynamic instability in the macro behaviour and explain almost all the cases of path dependence, 
both in reversible and, in many cases, irreversible systems, as we can argue from [A.1] in the 
previous models (Liebowitz and Margolis 1998, Arthur 1988, 1994). 



8 � A Combinatory Automaton simulating Improvement and Progress  

A very special and important combinatory system is the one I have named the Improvement and 
Progress Combinatory System, since its particular effect is to produce progress, according to 
commonly accepted value judgements regarding an improvement in the overall state of a 
collectivity5. 

The systems of IMPROVEMENT AND PROGRESS may be simulated by a Combinatory Automaton 
following these very simple rules based on the general definition in section 2: 
1) the analytical state of the automaton, Λ(th)=[µi(th)] is defined as the values of the parameter of 

improvement µi(th) associated with each Ai in th∈T; the succession [µi(t0), �, µi(th), �] 
represents the improvement path of Ai; 

2) the synthetic state and the output of the automaton at th are defined as the value assumed by the 
macro variable π(Λ, th) = (1/N) Σ1≤i≤N µi(th), which represents the parameter of progress for the 
entire system; the succession [π(Λ, t0), �, π(Λ, th), �] represents the progress path of Λ(th); 

3) at time th the necessitating operation(s), which condition the internal event (decision) that 
determines the agents� behaviour, derives from the difference Νi = ∆µi(th) = µi(th) - π(Λ, th), 
which denotes the deviation between the individual improvement level and the mean level 
denoting collective progress; so that each Ai perceives an inferiority, with respect to the mean, if 
∆µ(n, t) <0, or a superiority in the opposite case, and acts to maintain or increase the advantage, 
or eliminate or reduce the disadvantage; 

4) the micro transition functions can assume the following expression; µi(th+1) = { µi(th) + pi ii 
∆µi(th) }; the probabilities pi = p(∆)[0,1] (the probability is not only agent-dependent but is 
assumed to be dependent, for each agent, on the sign of ∆µi(th)) represent the necessitating 
factors under the hypothesis of irreversibility (agents can only ameliorate their improvement 
measures), or pi = p(∆)[-1,1] under the hypothesis of reversible micro behaviour (agents may also 
reduce their improvement measures with respect to the progress measure); the parameter ii 
indicates the random action of Ai to ameliorate his performance; 

5) to make the model more general, I have also supposed that the micro transition functions which 
determine the change in the agents� behaviour depend also on environmental factors, that is on 
external events, whose general expression is: {ri [k µi(th) + h π(Λ, th)]}, where r(∆)[0,1] = ri (or 
r(∆)[-1,1] = ri in the case of reversibility) indicates the probability of this external event � 

                                                           
5 The economy considered as a typical combinatory system of improvement and progress was theorized firstly by Adam 
Smith; he asserted that each individual strives to become wealthy, considering only his own gain, but to this end he 
must produce with the maximum productivity and exchange what he owns or produces with others who are capable of 
evaluating the goods  he has to offer. The human desire to improve wealth and individual happiness produces progress 
in general wealth and welfare; Smith argued that the division of labour and a free market are the recombining factors 
necessary for the system to operate. The maximization of returns on invested capital represents the necessitating factors 
together with the necessity of happiness as well. "Every individual is continually exerting himself to find out the most 
advantageous employment of whatever capital he can command. It is his own advantage, indeed, and not that of the 
society, which he has in view. But the study of his own advantage naturally, or rather necessarily leads him to prefer 
that employment which is most advantageous to society." (Smith 1776). 
Also Ludwig von Mises clearly described the economic system (consumers and producers) as an  improvement and 
progress combinatory system.“The rich adopt novelties [improvement] and become accustomed to their use [producing 
positive gaps]. This sets a fashion which others imitate [mean value increases]. Once the richer classes have adopted a 
certain way of living, producers have an incentive to improve the methods of manufacture [recombining factor] so that 
soon it is possible for the poorer classes to follow suit [reducing negative gaps]. Thus luxury furthers progress. 
Innovation "is the whim of an elite before it becomes a need of the public. The luxury today is the necessity of 
tomorrow.“ [recombining factor]. Luxury is the roadmaker of progress [necessitating factor]: it develops latent needs 
and makes people discontented [recombining factor]. In so far as they think consistently, moralists who condemn luxury 
must recommend the comparatively desireless existence of the wild life roaming in the woods as the ultimate ideal of 
civilized life.” (Ludwig von Mises 1981) [square brackets are ours] 



assumed to be dependent, for each agent, on the sign of ∆µi(th) � and [k µi(th) + h π(Λ, th)] 
represents the amount of influence of the environmental variables on the improvement measure 
of Ai. This expression translates the common idea that the attempt to improve performance is 
conditioned by both the previous level of the individual performance measure and the previous 
level of performance of the system (k and h are scalar coefficients, but we may normally 
assume that h=0). 

6) the micro and macro dynamics are thus connected, since the level of improvement measures 
determine the level of progress, but this in turn modifies the subsequent improvement variables 
in the typical micro-macro feedback; 

The combinatory automaton is summarized in the formal model: 
 

µi(t0) ←�CHANCE� 1≤i≤N [B-1] 
π(Λ, th) = (1/N) Σ1≤ i≤N µi(th) = X(Λ, th) h=0, 1, 2, � [B-2] 
µi(th+1) = { µi(th) + pi ii ∆µi(th) } + { ri [k µi(th) + h π(Λ, th)] } 1≤i≤N [B-3] [B] 

      
 ∆µi(th) = µi(th) - π(Λ, th) = Νi 1≤i≤N [B-4] 

 

and, due to the structure in [B-2], we can name it the MEDIAL AUTOMATON of IMPROVEMENT AND 
PROGRESS. 

Two important remarks need to be made. 
At first I observe that, even if the MEDIAL AUTOMATON of IMPROVEMENT AND PROGRESS is 

quite general, we may conceive of two other different automata simply by specifying equation [B-
2].  
1. Assuming:  
 

π(Λ, th) = Maxi µi(th) = µM(th) 
 

we have defined the Maximal Automaton of Improvement and Progress (or �of pursuit�); 
consequently, in equation [B-4],  
 

∆µi(th) = µi(th) - µM(th) 
 

represents the quantum of inferiority perceived by each agent compared with the improvement 
parameter of the leader agent (or �the best�). We thus witness micro behaviours aimed at reducing 
the inferiority with respect to the level of progress, and this causes a macro behaviour whose effect 
is to raise the average level of improvement, so that some agents manage to further raise the 
previous level of progress. 
2. Assuming: 
 

π(Λ, th) = Mini µi(th) = µm(th) 
 

we have defined the Minimal Automaton of Improvement and Progress (or �of flight�); in equation 
[B-4]: 
 

∆µi(th) = µi(th) - µm(th) 
 

represents the quantum of superiority perceived by each agent compared with the improvement 
parameter of the base agent. 

These systems act in a symmetrical way with respect to the previous ones, since each agent of 
the system tries to outdistance as much as possible its own level of improvement from the level of 
progress, to flee from the minimum level of improvement, and to increment its own superiority. 



This leads to a general increase in the average level of improvement, which ends up raising the 
parameter of progress, further boosting the levels of improvement. 

Secondly, let us note that if both pi and ri admit reversibility, then the system is strong 
reversible; if only one of the two probabilities admits reversibility (generally ri), the system is weak 
reversible; elsewhere it is irreversible and improvement and progress are continuously increasing. 

Let us assume an automaton of ten agents described by Figure 4, which also shows the 
dynamics of this system under different hypotheses of reversibility. 

 
Figure 4 – Three types of systems of improvement and progress 
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1.(B) � Simulations Simulations (red lines indicates the progress variable; coloured lines indicate 
agents� improvement variable) 



As we can easily note, the more reversibility is introduced, the more the macro and micro 
behaviours are chaotic, as we can verify by simulating dynamics for 20 iterations. 
Among the phenomena that can be explained using the system of improvement and progress are the 
growth of productivity in firms, the continuous improvement in the quality of products, progress in 
the sciences and in technology, and the evolution of all types of species as a consequence of 
individual choices. 

9 � A Combinatory Social System producing the Voice and Noise 
effect in crowded rooms. 

Let us now consider the phenomenon of a murmur arising in a crowded room, typically produced 
by a combinatory system of talking people. The murmur is the output of the crowded room 
considered as a combinatory automaton and is produced by the combination of the voice levels of 
the individual speakers who, in order to make themselves heard, must raise their voices some 
decibels above the murmur. But recursively this increases the murmur, in a typical feedback 
between micro and macro behaviour.  

For an observer, the talking agents thus seem self-organized to simultaneously raise their voice 
level and produce a stable, a rising, or a fluctuating noise, a typical pattern which, I am sure, we 
have all experienced several times. 
 

We can represent this phenomenon through the medial stochastic combinatory automaton [C]6:  
 

Λ(t0) = vi(t0) ← �CHANCE� 1≤i≤N 

C1≤i≤N [vi(th)] = (1/N) ∑1≤i≤N vi(th)  
M(Λ, th) = { k [(1/N) ∑1≤i≤N vi(th)] + Q r(th)[0,1] } (1 � a) h= 0, 1, 2, � 

[C] 

         vi(th+1) = { [wi M(Λ, th) + vi(min) ]+ vi (rnd) li(th)[0,1] } si [0,1] bi (bol) (th); 1≤i≤N 
 

The simulation model of Figure 5 shows this phenomenon; it describes a linear stochastic 
medial automaton of 20 (non-ordered) speakers observed for 30 iterations. 

The voice levels (colored lines) are the variables associated with the speaking agents. 
The noise (bold blue line) may be viewed as the output of the combinatory automaton 

constituting the collectivity considered as a whole. 
The crowded room recombines the voice levels into a simple mean [(1/N) ∑1≤i≤N vi(th)], but the 

level of noise also depends on several factors � the nature of the speakers, the necessity of speaking, 
the structure of the room that, recombining the voices, can maintain or reduce the murmur � which 
specify a set of appropriate parameters for the macro and micro functions F and f.   

In particular, the necessity to speak is represented by a probability that may or may not depend 
on time and on the number of talking people. If we introduce tolerance into the model, that is the 
maximum level of bearing, then the system may show a cyclical behaviour. 

10 � Medial combinatory systems producing a growth in prices 

This combinatory system is very common and operates whenever a certain number of operators, Ai, 
involved in the retail markets of a certain good, decide to purchase or sell at certain prices, taking 
into account the global information represented by the price index for that and/or other goods. The 

                                                           
6 For details, see: http://www.ea2000.it/cst/CSTteory/CST-SO.pdf. All the models may be algebraically rearranged and 
simplified. 

http://www.ea2000.it/cst/CSTteory/CST-SO.pdf


price index P(th) is represented by the weighted average of prices pi(th) that exists for every Ai, but 
at th+1 each Ai adjusts its own prices by taking into account the gap represented by [P(th) - pi(th)]. 
The system is simulated by a medial combinatory stochastic automaton. 

The simulation model in Figure 6 shows this phenomenon; it describes a mono-dimensional 
medial stochastic automaton of 10 (non-ordered) operators observed for 20 iterations. 

The bold blue line represents the global information, that is the price index; the coloured lines 
show the micro behaviour of the prices quoted by each operator. The red line indicates the trend 
growth of the price index. 

 
Figure 5 - Model of Murmur and Noise system with 20 agents and differentiated probabilities for 
each Agent 

 

Test 1 � External noise Q = 0 decibels. Mean probability to speak = 80% 
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Test 2 � External noise Q = 10 decibels (all other parameters equal) 
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Test 3 � Mean probability to speak = 85% (all other parameters equal) 
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A similar though much more complex combinatory system is represented by the stock 
exchange, which produces chaotic dynamics in the quotations of individual stocks and in the 
general indices. 

Let us consider the simpler case of a certain number of stockbrokers interested in trading a 
certain stock, and let us suppose that their purchase or selling decisions are taken only considering 
the price index S(th) for that stock.  

 
Figure 6 - Model of Increasing price system with 10 agents and differentiated probabilities for 

each Agent 
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We can easily see that if an operator Ai at time th possesses a stock with a value si(th) < S(th), 

the potential gain is equal to the difference; thus Ai can decide to keep the stock, perhaps hoping for 
a further rise, or sell it for a gain. If instead si(th) > S(th), then there is a potential loss equal to the 
difference. Ai can thus decide to keep the stock, hoping perhaps for a rise in value, or sell it to limit 
the loss. To simulate the behaviour of the operators by means of a stochastic combinatory 
automaton we must introduce selling probabilities that can be differentiated based on the sign and 
level of the difference: ∆si(th) = [si(th) - S(th)]. Once the decisions are made the new prices, which 
depend on the level of S(th) as well as on random factors, lead to changes in the stock quotation, 
which becomes S(th+1) and will influence subsequent selling decisions. For simplicity�s sake the 
purchasing decisions are not explicitly considered, but are held to be linked to the selling ones. 

Since the behaviour of each agent depends only on the information regarding the gap between 
the value of the stock that is held and the stock quotation of the share, this automaton is only based 
on one-level feedback between micro and macro behaviours, as indicated in figure 7. This model 
specifies that the stockbrokers make decisions not only taking account of the level of S(th) but also 
other exogenous information. 

In fact, as we all know, trading decisions regarding a stock also depend on the general level of 
stock exchange quotations, which derives from the weighted average of the quotations of the 
various stocks (Fig. 8). If the general quotation represents further information for an individual 
stockbroker, then the stock exchange also becomes a combinatory system where the brokers decide 
based on two levels of feedback, one represented by the quotation of their own stock and the second 
by the general stock exchange index, as shown in the model in figure 9. 

Nevertheless the behaviour of stockbrokers depends not only on the individual stock quotation 
but also that for other shares. In this case we can define the combinatory system as a crossed-
feedback combinatory system (Fig. 10). 
 



Figure 7 - Model of price dynamics produced by a the combinatory automaton simulating a 
single stock with 10 agents and differentiated probabilities for each Agent  
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Figure 8 - Model of a Stock Exchange in which 5 stocks are quoted 
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We obtain an important conclusion from these models: the general price index of a stock 

exchange is the result of a complex combinatory system, holonic in nature and composed of 
complex combinatory systems interrelated by means of multiple and crossed feedback. The 
interconnected stock exchanges are similar to a holarchy, which is a hierarchically organized 
structure of holons (Fig. 11)6. 

                                                           
6 Koestler�s holonic systems approach represents a different approach with respect to Agent-Based Systems (Koestler 
1968; Shimizu 1987; Wilber 2000), particularly useful for studying the behaviour of living organisms and social 
organizations. These are composed of self-reliant units that are capable of flexible behaviour. More specifically though, 
a holon can be thought of as a special type of agent that is characteristically autonomous, cooperative and recursive, and 
that populates a system where there is no high-level distinction between hardware and software. 
Holons form Holarchies, defined as hierarchically organized structures of holons. In a Holarchy each Holon could be 
regarded as either a whole or as a part, depending on how one looks at it. A Holon will look as a whole to those parts 



Figure 9 - Model of the combinatory system of a single stock (a) quotations showing one-level 
feedback. 
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Figure 10 - Model of the combinatory system showing two-level feedback, and crossed feedback 

which determines the formation of the Stock Exchange quotations  
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It is possible that the broker�s decision to sell a stock can, in a certain sense, set off a 

combinatory dynamic process for that stock. The dynamics regarding that stock can then influence 
that of other stocks, in the same as well as opposite direction. The combination of the dynamic 
processes for these stocks determines that of the general index, which in turn influences 
stockbrokers� decisions by modifying these decisions, or strengthening or inverting the direction of 
the trend. Finally, the world exchanges are interconnected by the feedback process so as to form a 
single combinatory system. 

                                                                                                                                                                                                 
beneath it in the hierarchy, but it will look as a part to the wholes above it. Thus a Holarchy is a whole that is also a 
structure of parts that are in themselves wholes. 



It is thus not difficult to imagine how the beating of a butterfly�s wings can condition some 
operators and have catastrophic results for the dynamics of a stock exchange, and that this can 
condition the dynamics of the entire system of world exchanges. 

 
Figure 11 – Model of the holonic structure of the Stock Exchange network 
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11 � Races and Records as Combinatory Systems 

A competition � for example, a car race � can be viewed as the effect of a maximal combinatory 
system. The racers are agents who produce a position in the race; the global information is 
represented by the standings at every instant of the race. The leader considers it necessary to 
maintain his lead over the followers; those following the leader find it necessary to reduce the gap. 
Thus the racers try to continually adjust their states, thereby producing micro behaviours in order to 
gain and maintain the highest positions. This combinatory system is reversible in that the individual 
racers can modify their position during the race (Fig. 12). 

We can also assume the irreversibility of the results gained by those participating in the 
competition, as occurs, for example, in all attempts at breaking a record. 

A record, in any sports category, determines the "absolute best"; because of this we witness a 
true race for the record. 

Those who compete are not content to equal the record, but instead do all they can to beat it. 
Thus, records are gradually improved and represent at one particular moment the macro effect of 
the combinatory system of the athletes and the global information that directs the subsequent micro 
behaviours. 

The attempts to improve the records motivate more and more athletes to take part in 
competitions, which also leads to the continual improvement in the average performance of the 
athletes, so that after a more or less lengthy period, beginning when the first record was set, the 
average performance of the competitors is very high.  



12 � Combinatory systems of accumulation and of diffusion 

We can define as accumulation systems those combinatory systems whose macro behaviour 
leads to a macro effect that can be perceived as an accumulation of objects, types of behaviour, or 
effects of some kind. 

If we have to accumulate some object with others similar in nature (micro behaviour), we 
normally look for already-made accumulations, since this gives us an advantage or reduces some 
disadvantage (necessitating factor). 

The accumulation represents the global information that directs the choices of the Agents to 
accumulate or disperse the objects. 

If the environment preserves the accumulated objects or is not able to eliminate them, and 
maintains the advantages of the accumulation, this favours the accumulation (macro behaviour), 
and an accumulation of some kind is created (macro effect). The micro-macro feedback is evident: 
the larger the accumulation (macro effect), the more incentive there is to accumulate (micro 
behaviours) objects (micro effects); the collective accumulation (macro behaviour) leads to an ever 
greater accumulation. 

These systems are normally irreversible. 
Another very important and diffused class of combinatory system is represented by the 

combinatory systems that lead to the spread of objects or to the diffusion of a feature, a peculiarity, 
or a "state" from a limited number to a high number of elements of the system. 

The global information is represented by the observed or hypothesized diffusion of objects or 
features among the collectivity. 

A greater diffusion (macro effect) implies a greater desire to acquire the object (micro effect); 
the single acquisition (micro behaviour) widens the collective diffusion (macro behaviour). 

Many systems of this kind are reversible, and reversible choices may imply complex micro and 
macro behaviours. 

 
Figure 12 – Combinatory maximal system of pursuit simulating a race with 5 pursuers acting over 
10 iterations 
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13 � Path Dependence and Chaos in Reversible Combinatory 
Automata Simulating Diffusion 

According to the general model [A] of section 2 it is easy to build the following Combinatory 
Automaton simulating diffusion and accumulation: 

 



Ai for which ai(t0) = {0 or 1} 1≤i≤50 Agents   

Λ(t0) = [ai(t0)] ← �CHANCE�  Initial analytical state [D.1] 

Χ(Λ, th) = ∑1≤i≤N ai(th) = N(th); 
h=0, 1, 2, 
� 

Synthetic state [D.2] [D] 

 
         ai(th+1) = fi {Νi[ai(th) pi[N(th)]]}; 1≤i≤50 Transition of state [D.3] 

  Define pi[N(th)]  Operative Programme [D.4] 

 
Let us first consider a Combinatory Automaton simulating diffusion. 
In the previous point 6) of the general model [A] of the Combinatory Automaton, we can simply 

assume that ai(th) = �0� �or ai(th) = �1� according to a probability of transition of state; so we 
simply write:  

ai(th+1) = {�1� pi[N(th)] or �0� qi[N(th)]}. 

If pi[N(th)][0,1] = [N(th)/N], then the system�s macro behaviour is irreversible and the diffusion 
accelerates, since the probabilities depend on the synthetic state and this is monotonically non-
decreasing7. 

If we abandon the hypothesis of irreversibility and consider the probabilities associated with the 
cells in the form pi[N(th)][-1, 1] � so that we admit that a cell could change its state from �0� to �1� as 
well as from �1� to �0� � then the Combinatory Automaton might show a chaotic macro behaviour 
in the sequence Χ(Λ, T) = N(th), h=0, 1, 2, � 
To produce chaotic behaviour of the automaton, let us assume, for example, that the probabilities 
are not agent-dependent and take on the following values corresponding to a tent map: 

2[N(th)/N]   if 0<N(th)≤N/2 

 p[N(th)][-1, 1] =  
       1-[(2N(th)-N)/N]  if N/2<N(th)≤N 

If we simulate the micro behaviour by some experiment that generates random numbers for each 
element, we can observe that the combinatory system presents a chaotic macro behaviour, 
independently of the initial random impulse, Λ(t0), that shapes ai(t0), as shown in figure 12)8. 

It is striking to observe how the random dynamics of the combinatory system shown in figure 
12[A]-[C] are analogous to the chaotic behaviour shown by the simple quadratic function in figure 
12[D] and, in particular, to the effects of path dependence. 

In order to simulate accumulation effects, let us assume an irreversible automaton and specify, 
in the previous point 6) of model [A] the following rule of transition of state: 

ai(th+1) = {� ai(th) + 1� pi[M(Λ, th)] or �ai(th)� qi[M(Λ, th)]} 

In these conditions, the synthetic state, Χ(th) = ∑1≤i≤N ai(th) = N(th), continuously increases and 
the rate of increase depends on the defined probability function. 

14 � Conclusions: exploring collectivities through the Combinatory 
System Theory 

                                                           
7 We could also add a premium proximity, in order to increase the probabilities of the neighbourhood of the cell whose 
value has changed from �0� to �1� , which would make the diffusion effect much faster or slower. 
8 So that the system�s history is irreversible and the system�s future unpredictable, or even chaotic, as the description of 
regularities is impossible (in the sense of Gell-Mann 1995-96, of Wolfram�s classification scheme (1984, 1994) , or of 
Devaney 1989). 



With the aid of unsophisticated Combinatory Automata I have tried to demonstrate that even simple 
collectivities of similar agents developing analogous micro behaviours may show interesting kinds 
of self-organization and operate following the logic of synergetics and complex systems. 

The Theory of Combinatory Systems9 searches for the conditions that produce the macro 
behaviours and proposes models to interpret the collective phenomena. In particular, the theory 
focuses on the necessity both of recognizing the nature of the global variables that act as global 
information and of understanding the nature of the macro rules, which specify the recombining 
factor(s), and of the micro rules, which specify the necessitating factor(s); the joint action of these 
factors gives rise to and maintains the macro and micro behaviours. 

The Theory also considers reversible systems (Lustick 2000) that have a cyclical behaviour and, 
under certain conditions concerning the probability function regarding the transition of state of the 
agents, a chaotic one as well (Gleick 1988, Kellert 1993).  

Combinatory systems are recursively closed systems; their dynamics are prevalently due to the 
joint action of "chance" and "necessity"; they might thus also be called "chance-necessity" 
systems.10 

Other relevant characteristics (I will only mention these) concern the fact that, even though 
combinatory systems are unorganized and closed systems, they can organize themselves into 
specialized subsystems and show ramifications (Monod 1971, Maturana and Varela 1987), and can 
expand their effects on elements belonging to a vaster environment. 

Combinatory systems constitute a particular class of complex systems (Gell-Mann 1995-96); 
but as they follow the simplest schema of adaptation, and because of the similarity of agents and 
behaviours, the absence of organizational or social links, levels, specializations, 
multidimensionality and, particularly, direct interactions, cooperation or competition among the 
agents and their neighbourhood, we could provocatively define these collectivities as a simplex 
system11 . 
                                                           
9 A general review of the Theory of Combinatory Systems is at the site: www.ea2000.it/cst. 
10 We have used, though with a different meaning, the same terminology used by Monod (1971), who, in his famous 
Chance and Necessity, examined a very powerful combinatory system: that leading to a dynamic evolution in a 
population due to random mutations produced in the DNA that "by necessity" spread as a result of the invariant 
reproductive mechanism of cells.  
Haken also speaks of chance and necessity when he proposes constructing models of complex systems. Here Haken 
considers chance as the unpredictable fluctuation from an unstable equilibrium state, and necessity as the movement 
towards a new, more stable state (Haken 1983, Prigogine and Stengers 1984).  
Chance will not only set under way the macro behaviour but will also determine the direction, that is the direction of the 
"winning" fluctuation. Prigogine bases his theory on the emergence of order in complex systems on the consequences of 
fluctuations (Nicolis and Prigogine 1989, Haken 1983). 
A simple way to observe the influence of the random fluctuations in orientating the direction of the "macro" dynamics 
of combinatory systems - even if it is not sufficient to describe the effect of chance on the overall dynamics of a 
combinatory system - is offered by the Polya Urns and by the Ehrenfest Urns. 
11 Combinatory systems differ from complex systems and, in particular, from complex adaptive systems (CAS) and from 
Holarchies in many aspects.  
Firstly, because combinatory systems do not necessarily present phenomena of adaptation but, generally, some form of 
self-organization due to the micro-macro feedback, that is the adaptation of agents to a synthetic variable produced by 
the macro behaviour of the system. Adaptation may be a characteristic of some particular class of CS representing 
populations and not, in general, of collectivities conceived in a broader sense.  
A second difference is observable also as regards the similarity of the agents: “Here we confront directly the issues, and 
the questions, that distinguish CAS from other kinds of systems. One of the most obvious of these distinctions is the 
diversity of the agents that form CAS. Is this diversity the product of similar mechanisms in different CAS? Another 
distinction is more subtle, though equally pervasive and important. The interactions of agents in cas is governed by 
anticipations engendered by learning and long-term adaptation.”. (Holland 1995: 93).  
The third main difference regards the absence of interactions among the agents; in combinatory systems agents 
generally interact only with some macro variable and not each other. The fourth relevant difference is that the theory of 
CAS observes the macro effects of the system produced by the agents that follow a schema or change the schema 
previously followed. Any micro-macro feedback between the micro behaviours and the schema is considered as a 
relevant characteristic. Finally, ignoring the micro-macro feedback implies that CAS theory only focuses its attention 
on necessitating factors and ignores the recombining ones.  

http://www.ea2000.it/cst


If the micro behaviours of the agents are determined exclusively by the macro behaviour, the 
combinatory system is a pure simplex system.  

If they depend also on an opportune neighborhood as well as, naturally, on the macro 
behaviour, the combinatory system is characterized by incomplete and limited information. 

Finally, if the agents� behaviour depends only on local rules acting on a defined neighborhood, 
without considering any micro-macro feedback, the system is a complex system and loses the 
characteristics of a combinatory system and can be simulated by traditional cellular automata.12 

The combinatory systems approach is neither a macro approach, since it also refers to local 
rules by considering micro behaviours, nor a micro approach, since it also includes the macro 
behaviour in the model of the system. 

It is rather a micro-macro approach, precisely in that the operating rules, describing the 
behaviour of the system, must in some way include not only local rules but also the feedback 
between the micro and macro behaviours that acts out over many cycles7. 

Three aspects of this theory make it particularly effective: 
1 - it is not limited to describing the macro behaviour of the unit based on general rules or the 

individual behaviours based only on local rules, but tries to uncover and explain above all the 
feedback between the macro and micro behaviours or their effects;  

2 - to understand the phenomena attributable to the action of combinatory systems the theory 
tries to uncover and make clear the necessitating factors (that cause the micro behaviour of each 

                                                                                                                                                                                                 
For a synthesis, see Table 1. 
 
 

Table 1 - How do Combinatory Systems differ from Complex Systems? 
Complex systems and 
Holarchies 

Complex Adaptive 
systems Combinatory Systems 

Agents are heterogeneous Diversity of the agents as 
a constitutive feature 

Agents are similar 

Agents are interconnected 
and show hierarchy 

The Agents  present  
phenomena of adaptation 

Agents are not 
interconnected 

Micro behaviours are 
differentiated 

Agents are interconnected Micro behaviours are 
analogous 

Agents act following local 
rules 

Agents act following a 
schema 

Agents act following the 
micro-macro feedback 

Decisions are prevalently 
based on  the prisoner�s 
dilemma schema 

Decisions are based on 
forecast and expectations 

Decisions follow a 
simple one column pay-
off matrix 

 
12 For this reason we cannot in general consider the ants, the swarm and, more generally, the cellular automata 
approaches as examples of combinatory systems, except in the case where the macro behaviour may affect the micro 
behaviours of the by creating an �aromatic potential field� by spreading pheromones). With their micro behaviours the 
agents spread pheromone across one site (micro information); the increasing concentration of pheromone (global or 
macro information) increases the probability that each agent will move in the direction of that site. The micro-macro 
feedback is quite evident (Zollo, Iandoli and De Maio 2001, Deneubourg and Goss 1989). This behaviour is the 
consequence of stigmercy (Grassé 1959). 
7 We can consider the micro-macro feedback approach as a meso approach (Rousseau 1985, House/Rousseau/Hunt 
1995). �Formally defined, meso theory and research concerns the simultaneous study of at least two levels of analysis 
wherein (a) one or more levels concern individual or group behavioral processes or variables, (b) one or more levels 
concern organizational processes or variables, and (c) the processes by which the levels of analysis are related are 
articulated in the form of bridging, or linking, propositions.� (House/Rousseau/Hunt 1995: 73).; �Organizations affect 
behavior and behavior affects organizations.” (House/Rousseau/Hunt 1995: 83). We can observe, however, that these 
authors do not consider the micro-macro feedback as a construct (Morgeson and Hofmann 1999: 259) useful for 
investigating organizational behaviour. 
Combinatory System Theory follows the bottom up approach of Epstein and Axtell (Epstein and Axtell 1996), but 
unlike that approach  ours considers the micro-macro feedback as the origin of self-organization in Combinatory 
Systems. 



agent in the system) and the recombining factors (that produce and maintain the unit�s macro 
behaviour). The theory then concludes that, in the presence of suitable necessitating and 
recombining factors, �chance� will trigger the dynamic process of the system that �by necessity� is 
then maintained and influences the individual behaviours;  

3 - the procedural explanation offered by the theory not only allows us to understand the 
operating mechanism that produces the phenomena under examination, but also permits us to 
determine the most effective forms of control. 

 
Figure 12 – Reversible probabilistic combinatory system of diffusion with N = 50 and showing 

chaotic macro behaviour. Number of iterations T = 50 with neighbouring effects  

[A] Changing random numbers 
 

Test [A] 1 - N(0) = N(1) = 4 Test [A] 2 - N(0) = N(1) = 4 (new random numbers) 
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[B] � Changing initial value and keeping the same random numbers  
 

Test [B] 1 - N(0) = N(1) = 4 Test [B] 2 - N(0) = N(1) = 5 
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[C] - Probability increases straight line to 1 for N = 40 and then decreases to 0 for N=50. 
 

 Test [C] 1 - N(0) = N(1) = 4 Test [C] 2 - N(0) = N(1) = 10 (new random numbers) 
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[D] - Dynamic system x = c x (1-x) with c= 3.99 and x0 = 0.85 for 50 iterations. 
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