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COMPLEX SYSTEMS 02

Complex Systems vs. Simplex Systems
The Behaviour of Collectivities following the Combinatory System View

Piero Mella
Faculty of Economics, University of Pavia, ITALY -
Via San Felice, 5 - 27100 Pavia - Phone: +39.0382 506263 - Fax (office): +39.0382 506228
www.ea2000.it/inella - Email: piero.mella@unipv.it

. Abstract :
In Agent-Based Models, collectivities are -normally interpreted as complex (adaptive) systems, defined as a
plurality of (usually large) blind (reactive) or intelligent (active) specialized (usually strongly) interacting agents
(or processes), whose collective macro behaviour - determined by the interaction of the micro behaviours of the
agents - is non-linear and derives from local (proximity) rules following a schema (innate or learned). My paper v
also aims to demonstrate that collectivities whose agents show a similar nature or significance, ’develop
analogous micro behaviours which produce analogous effects and are not (necessarily) mterconnected can
produce a complex (self-organized or even chaotxc and, of course, path-dependent) macro behaviour: the
accumulation of objects, the spread of features or information and the pursuit or exceeding of a limit. I have
provocatively defined these collectivities as simplex systems, since the similarity of the agents and the micro
behaviours, and the absence of direct interactions among the agents, make these collectivities a particﬁlar
simplified class of complex (adaptive) syétems as usually conceived. When' simplex systems show a
micro-macro feedback between micro and macro behaviours, they can then be viewed as Combznatory Systems.
The second aim of this research paper is to illustrate, in particular — with the aid of a combinatory lattice — the
systems of improvement and progress, whose effect is to produce progress in the overall state of a simplex
system in which the agents pursue their search for individual improvement, as' we can typically observe in
collectivities of economic agents moved by their own interests or objectives in a local and global context.

Keywords: agent-based systems, combinatory systems, populations and collectivities, path dependence, chaos in

- social dynamics.

1 The study of collectivities and the
Sciences of Complexity. The macro
approaches (a short survey)

Collectivities have always been a very complex

subject of study, and for this reason a fascinating and

interesting one as well. ' :
If observed from a certain distance collectivities
appear distinct with respect to the individuals they are
composed of, and thus seem able to show an
autonomous macro behaviour due to the joint action of
the micro behaviours of the agents. This macro
behaviour may show a chaotic dynamic or a regular
one as a resuit of some kind of self-organization.
Originally, the study of collectivities considered as
systems of agents followed the traditional macro or
macro

analytic  approach, which produces a

description of the behaviour of collectivities only

Complex Systems 02 (2002.9.9-11, Chuo University, Tokyo)

following general macro rules and ignoring the micro

behaviour of the agents.

Within the Sciences of Complexity the macro
approach is typical of Population Dynamics Models, -
which try to represent population behaviour (increase,
evolution, co-evolution and competition) in terms of )
the number of their elements, using, for example,
Malthusian models and Volterra-Lokte equations in
various forms (Volterra 1931, Ardeni and Gallegati
1999). '

Wiener’s Cybernetics (Wiener 1948, von Foerster
1960; Haken 1977, Kauffman 1993) and, in particular,
Evolutionary Cybemetics (Campbell 1960, ‘Gould"
2000), are other macro approaches which aim to
explain how collectivities are able to arrange their
components to form' patterns different or better than
the previous ones.



Von Bertalanffy’s General System Theory (von
Bertalanffy 1968) and Haken’s Synergetics (Haken
1977), Forrester’s Systems (Industrial) Dynamics
approach (Forrester 1961), Senge’s System Thinking
. approach (Senge 1990), and Maturana’s and Francisco
Varela’s Autopoiesis approach (Maturana and Varela
1980, Varela 1979 and 1981, Maturana and Guiloff

1980, Zeleny 1981) offer powerful conceptual

frameworks and practical tools for building models of
the behaviour of collectivities.

2 Collectivities as Complex Systems. The

micro approaches (a short survey) .
Since Thomas Schelling’s attempt, in his very famous
work, Micromotives and Macrobehavior, to offer
thrdugh game theory and the prisoner’s dilemma
model a logical explanation of why collective macro
behaviour derives . from the micro behaviours of
- intelligent agents (Shelling 1960 and 1978), and
Conway’s discovery of the fantastic world of  Life
(Gardner 1970), the study and simulation of the
behaviour of collectivities or of agents (Harding 1990)
‘has  followed micro or synthetic
approaches.

In Agent-Based Models, collectivities are-normally

internal  or

interpreted (Flake 1998) as Complex -(Adaptive)

Systems (Coveney and Highfield 1995, Mitleton and
Kelly 1997, Allen 1997, Axelrod 1997, Goldspink
2000), defined as a plurality (usually large) of blind
(reactive) or intelligent (active) multi-character
(Drogoul and Ferber 1994), specialized, usually

(strongly) interconnected (Wu 1997, Granovetter 1974,

- Grimmett 1999) interacting agents - (or processes)
(Holland 1995, Gell-Mann 1994&1995, Stacey 1995),
often showing possible multi-level hierarchies (Chan

1998, Gaffeo 1999, Cummings and Staw 1985: 2)

whose collective macro behaviour is determined by
‘the interaction of the micro behaviours of the agents
(Otter, Veen and Vriend 2001) on the basis of simple
local rules (Waldrop .1993) according to a schema
(innate or learned) (Dooley 1997, di Primio 1999), and
which shows non-linear dynamics (Lewin 19’_92)1 as
well as unanticipated global properties, or patterns
(Foster and Metcalfe 2001: 4). \

The Complex Adaptive Systems approach, in
particular (Allen 1997), studies how collectivities
interact and exchange information with their-
environment to maintain their internal processes over
time through adaptation, self preservation, evolution

and cognition (in the sense of Maturana and Varela
1980: 13), and to achieve collective decisions (Rao
and Georgeff 1992: 127-146, Wooldridge and
Jennings 1994) within a relational context of micro

" behaviours (Conte and Castelfranchi 1992)..

“If you want to understand why-a person acts as

she does, it is certainly possible to look around

in the immediate
explanation. But ofien an explanation needs to
look also, or perhaps primarily, at events that
occurred in the past and at how the present
situation developed from previous

- circumstances.” (Gilbert 1995).

The analysis of complex systems' implies a
Recursive Approach, and two .of the most powerful
tools are represented by the Cellular Automata Theory
— introduced in the late 1940°s by John von Neumann
(Burks 1966), which allows the.researcher to explore
complex systems by simulating Artificial Life (Alife)
(Liekens 2000)- and the Genetic Algorithms approach
(Bak 1994, 1996, Schatten 1999). '

The theory of Cellular Automata = builds
mathematical models of a system whose agents are
represented by cells in an. array (a lattice) of one or
more dimensions (Creutz 1996, Schatten.1999). It is
important to note that the rules. that define the micro
behaviour of a cell are only Joeal rules, in the sense
that the state of the cell depends only on one of a
specified number of neighbours and not on the state of
the array (Gardner 1970, Toffoli and Margolus 1987,
Dewdney 1989 and 1990, Ulam 1986 and 1991).

Following the logic of cellular automata, many
instruments have been created to

environment ' for an

fundamental

simulate Artifical Societies (Resnick 1994, Epstein

and Axtell 1996, http://zooland.alife.org). Among the
most well-known are Dorigo’s Ants approach (Dorigo,
Di Caro and Gambardella 1999, Holldobler and
Wilson  1990), Langton’s Swarm approach
(http://www.swarm.org), Reynolds’s. boids (Reynolds
1987), and Dolan’s Floys approach (Dolan 1998).

These instruments also demonstrate that there is
also a hidden order in the behaviour of collectivities of
simple living autonomous reactive agents.

As Holland attempts to demonstrate, the most
powerful approach to understanding and showing the
hidden order in collective behaviour is the genetic
algorithms approach (Holland 1975) and the related
genetic programming approach of Koza (Goldberg
1989, Koza 1992).




3 Towards simplex systems

Concentrating on the micro approaches, I observe that
if, on the one hand, it is easy to explain (perhaps
properly speaking, to describe), assuming only local
rules, the behaviour of a flock of birds, a school of
fish, or a herd of elephants when these collectivities
have already formed, or the spread of information, the
imitation of choices (information contagion), or the
percolation effects in probabilistic diffusion systems
(Frey and Decker 1996, Grimmet 1999), on the other
hand it is not so easy to apply this micro approach to
describe, for example, the vgrouping of flocks (a bird is
attracted by the flock and not by its neighbours),
swarms, herds and other collectivities, the formation
of graffiti on walls (people are attracted by the cloud
of graffiti and not by the behaviour of other people),
the breaking out of applause (many people applaud if
the applause dies ‘down), or the phenomenon of a
rising murmur in a crowded room.

It is clear that a person who is talking raises his
voice to go beyond the increasing murmur of the
crowed room orly for individual neceésity, and not
because his neighbours are raising their voices, or that
a fish joins a school of fish because of the presence of
a predator, and only if he can perceive the school, and
not because he sees other fish join the school.

Similarly, -it is hard to explain, by exclusively
using local rules, the exceeding of limits (all people

park or drive fast even in the presence of parking
limits and speed limits), the pursuit of records, the
. eternal maintenance of feuds, and the phenomenon of
urban settlements.

The analysis and understanding of these and many
other phenemena, which will be mentionned below, is
even more difficult because they often are "one way"

"and cannot be repeated or reproduced, as if due to

-chance.
While the phenomenon of urban settlements
appears to repeat itself many times, even with

particular variations, the same cannot be said for the
construction of towers in medieval Pavia, which is an
amazing event because it is unique.

And while the pursuit of a record is a common
event, it is more difficult to see any similarity with
feuds, which are usually so particular as to defy
comparison.

In many cases, moreover, Agents cannot observe

the collectivity, and thus their neighbours, and must -

act only based on individual necessities, as in the case

“of the formation of piles of garbage (if I need to throw

away a piece of garbage and I see a garbage pile, 1
prefer to leave my garbage behind), of annoying and
dangerous wheel ruts on the highway (passing trucks
need to maintain their trajectory on the carriageways,
and this is reinforced by these micro behaviours), or of -
paths in fields (people prefer to cross a field” where a
path is visible), and so on. ) E

In all these circumstances, the Agents’ micro
behaviours seem to follow some necessitating macto
variable(s) deriving from the collectivity (the cloud of
graffiti, the pile of garbage, the applause, the
carriageway, the feud, and so on) rather than obey a
set of local rules.

4 Peculiarities of Simplex Combmatory
Systems

I think that these and -many- other interesting

phenomena, or effects, might be attributed to the basic

behaviour of a simple kind of collectivity made up of

Agents (or elements) which: :

¢ show a similar nature, structure or significance?;-

s develop analogous micro behaviours which
produce analogous effects;

e are not necessarily interconnected by ev1dent
interactions, or by network, web or tree structures;

e perceive some macro variable (or a set of
variables) related to the macro behaviour (or the
macro effect) of the collectivity as a whole; ‘

» ' can evaluate, in a simple pay-off table, positive or
negative gaps (advantages or disadvantages). in
their status or performance with respect to the
macro variable;

e take individual micro decisions (by a process of
imitation and social learning) i order to increase
(if positive) or reduce (if negative) the percelved
gaps, : .

e but these decisions recursively change the value
assumed by the macro variable, and this modifies
the perceived positive or negative gaps, driving the
agents to adapt their behaviour by new decisions.
These collectivities constitute a particular class of

complex systems (Gell-Mann 1994:18) but as they

follow the simplest schema of adaptation, and because
of the similarity of agents and behaviours, the absence
of organizational or social links, levels, specializations,
multidimensionality particularly,  direct
interacﬁons, cooperation or competition among the
neighbourhood, we could

and,

agents and their



provocatively define these collectivities as a simplex
system. .

" The operative logic of simplex systems is as basic
as their structure:
"o on the one hand, the macro behaviour of the
system, as a whole, derives from the coxhbina_tion
(defined in an opportune way) of the analogous
micro behaviours and effects of its similar agents;
the other hand, the macro behaviour
determines, or directs the

e on
conditions, or
subsequent micro behaviours; _
o this reciprocal relationship may be defined as
micro-macro feedback and this produces the
simplest level of adaption of the entire system

(Gell-Mann 1994:20).

Because the micro behaviours, combined together,
produce the macro behaviour (and the macro effect)
that, in turn, conditions the micro behaviours of the
agents, according‘to a’ feedback relation between
micro and macro behaviours, these systems can also
be conceived of as (a particular class of) Combinatory
Systems. ~

I firstly observe that simplex or combinatory
systems show various forms of self-organization, in
the sense that the agents may adjust and specialize
their micro behaviours and produce a macro behaviour
that can lead to some macro phenomenon, macro
effect, or recognizable pattern, even without any
interaction among the components.

The four main classes of such phenomena are: the
accumulation of objects, the spread of features or
information, the pursuit of an objective or the
exceeding of a limit, and the interdependent dynamics
of individual improvement and collective progress in

the overall state of a collectivity (defined in opportune -

ways). -

If we accept the traditional definition of
self-organization as thé macro behaviour of a
collectivity of agents in which the micro behaviours
appear to be directed, or organized, by an Invisible
Hand, or Supreme Authority, in order to produce the
emerging phenomenon represented by the formation
of ordered structures, of recognizable patterns (Foster
and Metcalfe 2001: 130, Pelikan 2001), then all the
above-mentioned collective phenomena can also be
defined as self-organization or spontaneous order
(Sugden 1989, Kauffman 1993, Ashford 1999,
Swenson 2000).

5 Combinatory Automaton -

In order to simulate simplex or combinatory systems

and to produce the macro effects that characterize

simplex systems, it is useful to build a Combinatory .

Automaton, based on the following definition (Fig: 1):

1. a set of N cells A, 1<<N — arranged in a
combinatory lattice A - characterized by a
variable a;(t) defined in a domain d, € R; each
cell may be considered as an Agent of the
corresponding combinatory system; - ‘

2. the analytical state of the automaton, A(ty) =
[ai(ty)] is defined as the values a;(t;)ed; assumed
by A; for each tyeT (we assume T is a discrete
time scale); the time series A(T) = [ai(t;,), alty),
éi(t;), . « . | represents the micro behaviour of the
agent A, in period T »

3. the synthetic state of the automaton at ty is
defined as the value assumed by a global macro
variable X(ty) = By 25(ty) = B[A(ty)] dérived
from a combination of those values, where Byqen
indicates a set of combination ope}'ation(s),
appropriately specified (sum, product, average,
min, max, etc.), of values associated with A(ty);

4. the output behaviour of the automaton at ty is

. defined as'the value assumed by the variable, X(A,
ty) = F {X(t)}; the recombining function' F (or
macro rule) transforms the synthetic state into
the output of the ‘automator; the time series X(A,
T) = [X(A, to), X(4, t;), X(1, ;) ...] ,Of A(ty)
represents the macro  behaviour- of  the
corresponding combinatory system in the period
T; in many simple cases, X(1, ty) = X(ty);

5. the output effect of the automaton at t is defined
as the value assumed by the variable, E(A, ty) =
G{X(A, ty)}; the function G transforms the output
behaviour into the output effect of the automaton;
in many cases, when the combinatory system
show only the macro behaviour, we assume E(A,
tn) = X(A4, ty); '

6. at time ty,, each A; changes its value following
the micro transition function: aty,) = f
{Ni{aty), XA, t,)]} where N; represents the
decision variable - appropriately specified
(difference or variation) — resulting from a set of
necessitating factors which push the agent A; to
modify the previous values-a;(t,) according to the
output variable, X(A, ty) (or the output effect E(A,
t,)); in many simple cases, N = [a;(ty) +/- X(tw)];

7. for the recursive dynamics being produced we



must assume to be also specified the initial state
A(to); »

8. as a result, a general micro-macro feedback
relation connects the micro state to the macro
state through the variable X(A, ty) (or E(A, ty))
which may be thought as an organizing or driving
variable of the corresponding combinatory system
because it determines the subsequent micro
behaviour of the agent A;;

9. the set of rules specifying the operations )<y
and N and the rules F and f, represent the

operative programme, which produces - the
dynamics of the combinatory automaton.
The definition is summarized in the formal model:
AW =[a(t)] « “CHANCE”  1<isN [A1]
B x5 =F (X)) [43]
Ed, %) =C (X4, t)} . [A4]
a(ta)= 5 ({260, X4, %)) 19<N (A5]

Set: {Gisgw M F, G, and g} programme [4 6]

The combinatory automaton may be:

a) stochastic, if a probability, p;, is associated with
the transition of state of each A;, 1<i<N; in the
opposite case it is deterministic (in the model I
have not. explicitly considered probabilitieé);
probabilities may be: fired ift p;.= p for every i
and j; time dependent if p; = p(ty); time and agent
dependent if p; = py(ty); output dependent if p; =

" PilX, th);

b) time-response sensitive, if the length of the period

of transition of state At; = t;y, - t; is agent-output
dependent; At; = Aty(X,, t); (in the model I have
not explicitly considered sensitivity in the time
response because I have assumed At; = constant);
¢) two dimensional if Agents are arranged in R rows

' and C columns, so that N = (R*C), or
multidimensional (in the model I have considered
a mono-dimensional automaton);

d) mono or multiple-driven, depending on the
number of driving variables Mj(4, t,) (in the
model I have considered a mono driven
automaton and j=1 is omitted);

e) reversible, if ay(t,) = ay(ty), h<k, is admitted; (in
the model I have not explicitly considered
reversibility).

Lo, o wm
o Xt > XA L) — > BAL)
clsis_N F G .
Recombining j‘ee‘ﬂ"’d' ¥ t -
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' | & t,
Input due , : o
to chance a(t;) : - &
¢ t, > awpﬂ ey
At) ’
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Fig. 1~ A model of combinatory automaton

6 Chaos and Path dependence in
Combinatory Automata. The role of
reversibility '

In stochastic comBinatory automata when both

probabilities p; = py(X, tu) and periods of transition of

state t; = (X, t,) are agent/time/state sensitive, the
micro behaviours are conditioned by the macro
behaviour of the entire system, which makes the
micro-macro feedback evident.

Probabilities can act in two ways:

a. as stop-or-go probabilities, in the sense that if the
probabilistic event occurs, the agent assumes a
new state; otherwise, it maintains its actual state.
We might symbolise this type of pfobability on
writing: pi(X, tye,y. 0" means that if the event
does not occur, the agent maintains its state; “1”
that the agent changes its state if the event occurs;

b. as transition probabilities, in the sense that if the
probabilistic event occurs, then the agent enters a .
new state; if the event does not occur, the agent
assumes a different state or returns to the past one.
We might write: pi(X,, ty)p.1,1;.

The social combinatory systems that are most-

interesting and easiest to represent are the irreversible

ones (build a tower or not, teach Italian or English to
babies). In these systems both the micro and macro
behaviours produce permanent effects that may be
viewed as increasing or decreasing cumulative

_processes in which probabilities are: pi(X, th)o,-

Chaos arises in combinatory systems when the

. hypothesis of reversibility is introduced (for example:



to speak or to keep quiet in the next minute, wear a
skirt or miniskirt on different days, choose road A or
B on different days) (Fuchs and Haken 1989). These
systems are generally govemed by transition doors
- probabilities: pi(X, ty)py,q. -

When reversibility in micro behaviours or in micro
effects is possible, the combinatory system’s macro
behaviour, or macro effect, can show a cyclical
dynamic and, under certain conditions concerning the
“probability function regarding the transition of state of
the elements, a chaotic one as well, where no cycles
are recognizable in the orbit of the system starting
from random initial values (Gleick 1988).

'Examples of reversible systems are these of
diffusion and dissemination (fashion and contagion),
whose elements may at different times present the
same state chosen from a repertoire (Lustick 2000).

In particular we can note that in probabilistic
reversible combinatory systems both the random
initial states of the system and the probability function
of transition of states, which depend on the macro
behaviour at each iteration, can be determined with
ample approximation.

These hypotheses of A randomness in the initial
conditions and in their evolution as well (history
dependence), together with the imprecision of the
measurement of the micro behaviours, produce
dynamic instability in the macro behaviour and
explain almost all the cases of path dependence, both
in reversible and, in many cases, irreversible systems,
as we can argue from [A.1] in the previous models
(Liebowitz and Margolis 1998, Arthur 1988 and
1994).

7 A simple Combinatory Automaton. The
Murmur and Noise in crowded rooms.
Let us first consider. the phenomenon of a murmur
arising in a crowded room, typically produced by a
simplex system. The murmur is the output of the
crowded room considered as a combinatory automaton
and is produced by the combination of the voice levels
of the individual speakers who, in order to make
themselves heard, must raise their voices some
decibels above the murmur. But recursively this
increases the murmur, in a typical feedback between

micro and macro behaviour.
We can represent this phenomenon through the
combinatory automaton (BJ*:

v(n, 106 “crancE”’ 12nsN
My = { k (1/NY Zyaen [v(n, t] +b= 0, 1,
[B] +Qr 03 -13) 2 ..
v(n, ha) = [w(n) M0 + (vealt) +]1S <N
() Ln, )] sy(n) b, 1)

The simulation model of Figure 2 shbws this
phenomenon; it describes a linear automaton. of 20
(non-ordered) speakersAobserVed for 30 itérations.

Test 1 — External noise Q 5 dec. Mean probabxlzty
to speak 87%
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Test 2 — External noise Q =1 0 dec. Mean probabzllty
to speak = 90%

Voicas and noise in 2 crowded room

-1 -2 -4 - -5
] =T —1 ——10
St 12 b Ry
16 19

-0

o~ Prsceived Mumur *Meaanw
90 1 e

100
00 Beanan i 7 i

1234567 89310M123M4I56178R0N2045820883N

Fig. 2 - Model of Murmur and Noise system with 20
agents and differentiated probabilities for each agent.

The voice levels (coloured lines) are the variables
associated with the speaking agents.

The noise (bold blue line) may be viewed as the
output of the combinatory automaton constituting the
collectivity considered as a whole.

The crowded room recombines the voice levels
into a simple mean X <« [V(n, t,)]), but the level of
noise also depends on several factors: the nature of the
speakers, the necessity of speaking, the structure of the



room that, recombining the voices, can maintain or
reduce the murmur, which specify a set of
- appropriate parameters for the macro and micro
functions F and f. ' o

In particular, the necessity to speak is represented
by a probability that may or may not depend on time
and on the number of talking people. If we introduce
tolerance in the model, ‘that is the maximum level of
bearing, then the system may show a cyclical
behaviour.

In conclusion,
self-organized to simultaneously raise their voice level
and produce a stable, or a rising or fluctuating noise, a
typical pattern which, I am sure, we have experienced

the talking agents thus seem

several times,

8 The main 1deas of Combinatory System

Theory
On the basis of the previous example we can
introduce the Combinatory Systems Theory which
offers guidelines for observing collectivities as
simplex or combinatory systems’,

The central idea is that we can view a collectivity
as a combinatory system only if the agefgts are similar
and their analogous micro behaviours are not
exclusively determined by local rules but also by a
general micro-macro feedback rule (Foster and
Metcalfe 2001: 132-133) which acts over many
cycles®. The combinatory systems approach is neither
a macro approach nor a micro approach; it is a
micro-macro approach’.

The macro behaviour — or the associated macro
effects — may be thought of as a dynamic director or,
better yet, as an internal dynamic organizer which
seems to direct, or organize, the individual behaviours
to adapt their micro behaviours to the macro
to produce the collective
phenomena (von Foerster 1960, Haken
Prigogine 1985, Kauffman 1993, Martelli 1999).

If the micro behaviours of the agents are
determined exclusively by the macro behaviour, the
combinatory system is a pure simplex system. ‘

If they depend also on an opportune neighborhood,
as well as, naturally, on the macro béhaviour, the
combinatory system is characterized by incomplete
and limited information.

Finally, if the agents’ behaviour depends only on
local rules acting on a defined neighborhood, without
considering any micro-macro feedback, the system is

behaviour in order

1977,

a complex system and loses the characteristics of a
combinatory system

The second main idea is that in order to understand
and explain the activity of any combinatory system we
must recognize the nature of both the recombining
factor and the necessitating ones, whose joint action -
gives rise to and maintains the macro and micro

behaviours.
The third main idea is that the starting up of a
combinatory system — even if its behaviour is

deterministic - also requires a random input to activate
the micro-macro feedback. The output is then entirely
determined by the structural dynamics of the system,
according to the micro and macro rules and the
micro-macro feedback’.

Combinatory systems
systems; their dynamic is only due to the joint action
of "chance" and"'necessity"; they might thus also be
called "chance-necessity” systems ',

Other relevant characteristics. (I will only mention
these) concern the fact that, even though combinatory
systems are unorganized and closed systems, they can
organize themselves into specialized subsystems and
show ramifications (Monod 1971, Maturana and
Varela 1987), and can expand their effects on elements
belonging to a vaster environment.

are recursively closed

9 A Combmatory Automaton snmulatmg
Improvement and Progress

A very special and important combinatory system is

the one I have named the Improvement and Progress

Combinatory System, since its particular effect is to

produce progress, according to commonly accepted

value judgements regarding an improvement in the

overall state of a collectivity.

When “by chance” an improvement begins in one
or all of the agents of the system, then “by necessity”
progress throughout the system; the
improvement spreads and the progress continues, until
a limiting state is reached in which no further
improvement can be carried out and no further

occurs

PIogress can occur.
To simulate the systems of IMPROVEMENT AND

PROGRESS we can build a Combinatory Automaton

following these very simple rules according to the

general definition in par. 6. In particular:

1) the analytical state of the automaton,
A(ty)=[m(ty)] is defined as the values  of the
parameter of improvement p(ty) associated with



2)

3)

5)

each A; in t,eT; the time series [pi(ty), ..., Mi(ty),
...] represents the improvement path of A;;

the synthetic state and the output of the
automaton at t, are defined as the value assumed
by the macro variable m(A, ty) = (1/N) Zig
pi(ty), which represents the parameter of progress
for the entire system; the time series [n(A, tg), ...
w(A, ty), ...] represents the progress path of A(ty);
at time t, the necessitating operation(s), which
condition the internal event (dedision) that
determines the agents’ behaviour, derives from
the difference Ni.= Api(ty) = pi(ty) - n(A, ty),
which denotes the deviation between the
individual improvement level and mean level

denoting collective progress; so that each A

perceives an inferiority, with respedt to the mean,
if Ap(n, t) <0, or a superiority in the opposite case
and acts to maintain or increase the advantage, or
eliminate or reduce the disadvantage;

the micro tramsition functions can assume the
following expression; Wi(tars) = { mi(ts) + pi i
Api(ty) }; the probabilities p; = p(A)y (the
probability is not only agent-dependent but is
assumed to bé dependent, for each agent, on the
sign of Ap(ty)) represent the necessitating factors
the hypothesis of irreversibility (agents
can only ameliorate their improvement measures),
or p; = P(A)p1,4j under thie hypothesis of reversible

under

micro behaviour (agents may also reducé their

improvement measures with respect to the
progress measure); the parameter §; indicates the
random action of A; to ameliorate "his
performance;

to make the model more general, I have also

supposed that the micro transition functions

"which determine the change in the agents’

behaviour depend also on environmental: factors,
that is on external events, whose general
expression is: {r; [k pi(ty) + h (A, t,)]}, where
r(Ap,y = 1 (or r(A)p,y = r; in the case of
reversibility) indicates the probability of this
external event — assumed to be dependent, for
each agent, on the sign of Apy(ty) — and [k pi(ty) +
h n(A, t,)] represents the amount of influence of
the environmental variables on the improvement
measure of A;. This expression translates the
common idea that the attempt to improve

performance is conditioned both by the previous

level of performance measure of the system

(following the parameter k) and by the previous
level of individual performance measure (k and h
are scalar coefficients, but we may normally
assume that h=0). ,
6) the micro and macro dynamics are thus connected,
since the
determines the level of the progress, but this in .
tumn . modifies the subsequent improvement
variables in the typical micro-macro feedback;
The combinatory automaton is summarized in the,

level .of improvement measures

formal model:

plly) €= cHaneE” ASBN -1

| A 4) = (LN Fis s pla) 30,1,2, ... [C-]]
[C] pated = { ptd +p; &k Apen) )| 158N [C9)
+{1-i[kpf(ih)+hn(A,i,,)]} ,
Ap(l,)= i) - w4, 1,)=N, BN ¢4

and, due to the structure of [C-2], we can name it the
MEDIAL AUTOMATON  of IMPROVEMENT = AND
PROGRESS. .

Two important remarks need to. be made. o

At first I observe that, even ift the MEDIAL
AUTOMATON of IMPROVEMENT AND PROGRESS is quite
general, we may conceive of two other different
automata simply by specifying equation [C-2].
1. Assuming: e

(A, ty) = Max; gi(t) = p"(t)
we have defined the Maximal Automaton of
Improvement and Progress (or “of pursuit”);
consequently, in equation [C-4], '
Ap(ty) = pilty) - 1Mty o

represents the quantum of inferiority perceived by
each agent compared with the improvement parameter
of the leader agent (or“the best”). We thus witness
micro behaviours aimed at reducing the inferiority
with respect to the level of progress, and this causes a

‘macro behaviour whose effect is to raise the average

level of improvement, so that some agents manage to
further raise the previous level of progress.
2. Assuming: '
(A, ty)= Miny pi(ty) = pu(tn)
we have defined the Minimal Automaton of
Improvement and Progress (or “of flight”); in equation
[C-4]:
Apilty) = pi(tn) - P(ts)
represents the quantum of superiority perceived by
each agent compared with the improvement parameter -
of the base agent. .
These systems act in a symmetrical way with
respect to the previous ones, since each agent of the



system tries to outdistance as much as possible its own
level of improvement from the level of progress, to
flee from the minimum level of improvement, to
increment its own superiority. This leads to a general
increase in the average level of improvement, which
ends up raising the parameter of progress, further
boosting the levels of improvement.

Secondly, let us note that if both p; and r; admit
reversibility, then the system is strong reversible; if
only one of the two probabilities admits reversibility'
(generally r;), the system is weak reversible; elsewere,
it is irreversible and improvement and progress are
continuously increasing. v

Let us assume a . Maximal Automaton of
Improvement and Progress of ten agents described by
Figure 3, which also shows the dynamics of this
system under different hypotheses of reversibility. -

As we can easily note, the more reversibility is
introduced, the more the macro and micro behaviours
are chaotic, as we can verify by simulating dynamics
for 20 iterations.

Among the phenomena that can be explamed using
the system of improvement and progress are the
growth of productivity in fimms, the continuous
improvement in the quality of products, progress. in
the sciences and in technology, and the evolution of all
types of species as a consequence of individual
choices (Mella 2001).

10 Conclusions and challenges

The Combinatory System Theory focuses attention on
the importance of both the micro-macro feedback and
of the necessitating and recombining factors that
produce and maintain it.

With the aid of unsophisticated Combinatory
Automata I have also tried to demonstrate that even

- simplex systems, in which the reversibility in micro
behaviours and effects is admitted, may show cyclical,
irregular and even chaotic behaviour.

The challenge of Combinatory System Theory is
threefold: (i) to develop more general and further
sophisticated Combirxatory Automata for any specific
class of combinatory system; (ii) apply the theory to
understand collectivities operating in the real world;
(i) specify, for any real observed collective
phenomenon, the of necessitating and
recombining factors which allow us to interpret and
control the collectivity that produces it.

sets

Test 1 — Irreversible Maximal Automaton of
Improvement and Progress
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Fig. 3 - Maximal Automaton of Improvement and
Progress (10 agents, 10 iterations) with different
hypothesis on probabilities
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! So that the system’s history is irreversible and the system’s future
unpredictable, or even chaotic, if the description of regularities is
impossible (in the sense of Gell-Mann 1995, of Wolfram’s
classification scheme, 1984, 1994, or of Devaney 1989).

2 Combinatory systems differ from complex adaptive systems
(CAS) in many aspects. Firstly, because combinatory systems do
not necessarily present phenomena -of adaptation but, generally,
some form of self-organization due to the micro-macro feedback,
that is the adaptation of agents to a synthetic variable produced by
the macro behaviour of the system. Adaptation may be a
characteristic of some particular class of CS representing
populations and not only collectivities. A- second difference is
observable also as regards the similarity of the agents: “Here we
confront directly the issues, and the questions, that distinguish CAS
Jfrom: other kinds of systems. One of the most obvious of these
distinctions is the diversity of the agents that form CAS. Is this
diversity the product of similar mechanisms in different CAS?
Another distinction is more subtle, though equally pervdsive and
important. The interactions of agents in cas is governed by
anticipations engendered by learning and long-term adaptation. ”.
(Holland 1995: 93). The rhird main difference regards the absence
of interactions among the agents; in combinatory' systems agents
generally interact only with some macro variable and not each other.
The fourth relevant difference is that the theory of CAS observes the

macro effects of the system produced by the agents ‘that follow a
schema or change the schema previously followed.  Any
micro-macro feedback between the micro behaviours and. the
schema is considered as a relevant characteristic.. Finally, ignoring
the micro-macro feedback implies that CAS theory only focuses its
attention on necessitating factors and ignores the recombining ones
(see par. 8). ) ) !

In many cases -a set of function g transform each afty) in a
different variable ei(ts) = g [ai(ty)] that may represent the micro
effect of the micro behaviour of agent A, 1<i<N; in: many simple
cases, when the A; shows only the micro behaviour, we may assume
&(tn) = ai(ty).

All the models may ¢ be algebraically rearranged and srmphﬁed

Cambmalory System Theory is presented at: www,ca2000.ivcst.

Of course, the fundamental micro-macro Jeedback may also be
accompanied by several other loops which make the system’s
dynamics non-linear. 1 have preferred to mention only .the
micro-macro fundamental feedback that may be specified in
appropriate micro-macro loops.

We can consider the micro-macro feedback approach as a meso

approach (Rousseau 1985, House, Rousseau and Huat 1995).
Combinatory System Theory follows the bottom up approach of
Epstein and Axtell (1996), but unlike that approach ours considers
the micro-macro- feedback as the origin of self-organization in
Combinatory Systems.. -
8 For this reason we cannot in general consider the ants; the swarm
and, more generally, the cellular automata approaches as examples
of combinatory systems, except in the case where the macro
behaviour may affect the micro behaviours of the agents in some
way, for example by creating an “aromatic potential field” by
spreadmg Ppheromones or other permanent messages. With_their
micro- behaviours the agents spread pheromone across one’ site
(micro information); the increasing concentration of pheromone
(global or macro information) increases the probability that cach
agent will move in the direction of that site. The micro-macro
feedback is quite evident (Zollo, landoli and De Maio 2001,
Deneubourg and Goss 1989). This behavrour is the consequence of
stigmercy (Grassé 1959).

We must thus remember that in order to produce the " micro
behaviours (and observe the macro behavxour) we must usually
supply energy to the system Since the main objecnve of the theory
of combmatory systems is to bring out the operanve logic typical of
such systems, in order to sxmphfy their description energy inputs are
usually not considered, in part because such considerations are
usually superfluous, if not impossible. In order to give a technical

“explanation of the action of such systems, in particular for purposes

of designing them, knowledge of the energy mputs can’ be
mdrspensable

We have used, though with a different meaning, the same
terminology used by Monod (1971), who, in his famous Chance and
Necessity examined a very powerful combinatory system: that
leading to a dynamic evolution in a population due to random
mutations produced in the DNA that "by necessity" spread as a
result of the invariant reproductive méchanism of cells.
Haken also speaks of chance and necessity when  -he proposes
constructing models of complex systems. Here Haken considers
chance as the unpredictable fluctuation from. an .unstable
equilibrium state, and necessity as the movement towards a new,
more stable state (Haken 1983, Prigogine and Stengers 1984).
Chance will not only set under way the macro behaviour but will
also determine the direction, that is the direction of the "winning"

“ fluctuation. Prigogine bases his theory on the emergence of order in

complex systems on the consequences of fluctuations (Nicolis and
Prigogine 1989, Haken 1983).

A simple way to observe the inflow of the random fluctuations in
orientating the direction of the "macro” dynamics of combinatory
systems - even if it is not sufficient to describe the effect of chance
on the overall dynamics of a combinatory system - is offered by the
Polya Urns and by the Ehrenfest Urns.



